Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug;302(2):497-501.
doi: 10.1124/jpet.302.2.497.

A single methamphetamine administration rapidly decreases vesicular dopamine uptake

Affiliations

A single methamphetamine administration rapidly decreases vesicular dopamine uptake

Jeffrey M Brown et al. J Pharmacol Exp Ther. 2002 Aug.

Abstract

Recent studies demonstrated that vesicular dopamine (DA) uptake can be rapidly altered in synaptic vesicles purified from the striata of stimulant-treated rats. Specifically, a single administration of the plasmalemmal DA transporter inhibitor, cocaine, or the DA D(2) agonist, quinpirole, increases vesicular DA uptake in vesicles purified from the striata of treated rats. These effects of cocaine are prevented by pretreatment with a D(2), but not D(1), DA receptor antagonist. The purpose of the present study was to characterize the effect of a mechanistically different psychostimulant, methamphetamine (METH), on vesicular DA uptake. Results demonstrated that a single administration of this DA-releasing agent rapidly and reversibly decreased vesicular DA uptake. The METH-related decrease in vesicular DA uptake was attenuated by pretreatment with the D(2) antagonist, eticlopride, but not the D(1) antagonist, SCH23390 (R-[+]-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine). Core body temperature did not contribute to the effects of METH on vesicular DA uptake. Neither quinpirole nor cocaine increased vesicular DA uptake when rats were concurrently treated with METH. These studies provide further evidence that psychostimulants rapidly and differentially modify vesicular DA uptake. In addition, these studies demonstrate a complex role for D(2) DA receptors in altering vesicular DA transport.

PubMed Disclaimer

Publication types

LinkOut - more resources