Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;97(1):57-65.
doi: 10.1097/00000542-200207000-00009.

Isoflurane-induced facilitation of the cardiac sarcolemmal K(ATP) channel

Affiliations

Isoflurane-induced facilitation of the cardiac sarcolemmal K(ATP) channel

Kazuhiro Fujimoto et al. Anesthesiology. 2002 Jul.

Abstract

Background: Volatile anesthetics have cardioprotective effects that mimic ischemic preconditioning, including the involvement of adenosine triphosphate-sensitive potassium (K(ATP)) channels. However, evidence for a direct effect of volatile anesthetic on the K(ATP) channel is limited. In this study, the effects of isoflurane on the cardiac sarcolemmal K(ATP) channel were investigated.

Methods: Single ventricular myocytes were enzymatically isolated from guinea pig hearts. Whole cell and single-channel configurations, specifically the cell-attached and inside-out patch mode, of the patch clamp technique were used to monitor sarcolemmal K(ATP) channel current.

Results: In the cell-attached patch configuration, 2,4-dinitrophenol (150 microm) opened the sarcolemmal K(ATP) channel. Isoflurane (0.5 mm) further increased channel open probability and the number of active channels in the patch. In contrast, in the inside-out patch experiments, isoflurane had no significant effect on the K(ATP) channel activated by low ATP (0.2-0.5 mm). In addition, isoflurane had no effect on the K(ATP) channel when activated by adenosine diphosphate, adenosine + guanosine triphosphate, bimakalim, and 2,4-dinitrophenol under inside-out patch configurations. When K(ATP) current was monitored in the whole cell mode, isoflurane alone was unable to elicit channel opening. However, during sustained protein kinase C activation by 12,13-dibutyrate, isoflurane activated the K(ATP) current that was sensitive to glibenclamide. In contrast, isoflurane had no effect on the K(ATP) channel activated by 12,13-dibutyrate in a cell-free environment.

Conclusions: Isoflurane facilitated the opening of the sarcolemmal K(ATP) channel in the intact cell, but not in an excised, inside-out patch. The isoflurane effect was not due to a direct interaction with the K(ATP) channel protein, but required an intracellular component, likely including the translocation of specific protein kinase C isoforms. This suggests that the sarcolemmal K(ATP) channel may have a significant role in anesthetic-induced preconditioning.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources