Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 23;106(4):447-53.
doi: 10.1161/01.cir.0000023042.50192.f4.

Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium

Affiliations

Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium

Burkert Pieske et al. Circulation. .

Abstract

Background: In the failing human heart, altered Ca2+ homeostasis causes contractile dysfunction. Because Ca2+ and Na+ homeostasis are intimately linked through the Na+/Ca2+ exchanger, we compared the regulation of [Na+]i in nonfailing (NF) and failing human myocardium.

Methods and results: [Na+]i was measured in SBFI-loaded muscle strips. At slow pacing rates (0.25 Hz, 37 degrees C), isometric force was similar in NF (n=6) and failing (n=12) myocardium (6.4+/-1.2 versus 7.2+/-1.9 mN/mm2), but [Na+]i and diastolic force were greater in failing (22.1+/-2.6 mmol/L and 15.6+/-3.2 mN/mm2) than in NF (15.9+/-3.1 mmol/L and 3.50+/-0.55 mN/mm2; P<0.05) myocardium. In NF hearts, increasing stimulation rates resulted in a parallel increase in force and [Na+]i without changes in diastolic tension. At 2.0 Hz, force increased to 136+/-17% of the basal value (P<0.05), and [Na+]i to 20.5+/-4.2 mmol/L (P<0.05). In contrast, in failing myocardium, force declined to 45+/-3%, whereas [Na+]i increased to 27.4+/-3.2 mmol/L (both P<0.05), in association with significant elevations in diastolic tension. [Na+]i was higher in failing than in NF myocardium at every stimulation rate. [Na+]i predicted in myocytes from Na+ (pipette)-contraction relations was 8.0 mmol/L in NF (n=9) and 12.1 mmol/L in failing (n=57; P<0.05) myocardium at 0.25 Hz. Reverse-mode Na+/Ca2+ exchange induced significant Ca2+ influx in failing but not NF myocytes, compatible with higher [Na+]i in failing myocytes.

Conclusions: Na+i homeostasis is altered in failing human myocardium. At slow heart rates, the higher [Na+]i in failing myocardium appears to enhance Ca2+ influx through Na+/Ca2+ exchange and maintain sarcoplasmic reticulum Ca(2+) load and force development. At faster rates, failing myocytes with high [Na+]i cannot further increase sarcoplasmic reticulum Ca2+ load and are prone to diastolic Ca2+ overload.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources