Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jul;122(7):435-50.
doi: 10.1248/yakushi.122.435.

[Biosynthetic mechanism of the bioactive sulfated glycosaminoglycans]

[Article in Japanese]
Affiliations
Free article
Review

[Biosynthetic mechanism of the bioactive sulfated glycosaminoglycans]

[Article in Japanese]
Hiroshi Kitagawa. Yakugaku Zasshi. 2002 Jul.
Free article

Abstract

Sulfated glycosaminoglycans including heparin/heparan sulfate and chondroitin/dermatan sulfate have been implicated in numerous pathophysiological phenomena in vertebrates and invertebrates. The critical roles of glycosaminoglycans, especially heparan sulfate, in developmental processes involving the signaling of morphogens such as Wingless and Hedgehog proteins, as well as of fibroblast growth factor, in Drosophila have recently become evident. In biosynthesis, the tetrasaccharide sequence (GlcA-Gal-Gal-Xyl-), designated the protein linkage region, is first built on a specific Ser residue at the glycosaminoglycan attachment site of a core protein. A heparin/heparan sulfate chain is then polymerized on this fragment by alternate additions of N-acetylglucosamine and glucuronic acid (GlcA) through the actions of glycosyltransferases with overlapping specificity encoded by the tumor suppressor EXT family genes. In contrast, a chondroitin/dermatan sulfate chain is synthesized on the linkage region by alternate additions of N-acetylgalactosamine and GlcA through the actions of glycosyltransferases, designated chondroitin synthases. Recent studies have achieved purification of a few and molecular cloning of all of the glycosyltransferases responsible for these reactions and have revealed the bifunctional nature of a few of these enzymes. The availability of the cDNA probes has provided several important clues to help solve the molecular mechanisms of the biosynthetic sorting of heparin/heparan sulfate and chondroitin/dermatan sulfate chains, as well as of the chain elongation and polymerization of these glycosaminoglycans.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms