Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct 11;277(41):38647-59.
doi: 10.1074/jbc.M204603200. Epub 2002 Jul 22.

Calcium transport by sarcoplasmic reticulum Ca(2+)-ATPase. Role of the A domain and its C-terminal link with the transmembrane region

Affiliations
Free article

Calcium transport by sarcoplasmic reticulum Ca(2+)-ATPase. Role of the A domain and its C-terminal link with the transmembrane region

Jesper V Möller et al. J Biol Chem. .
Free article

Abstract

After treatment of sarcoplasmic reticulum Ca(2+)-ATPase with proteinase K (PK) in the presence of Ca(2+) and a protecting non-phosphorylated ligand (e.g. adenosine 5'-(beta,gamma-methylenetriphosphate), we were able to prepare in high yield an ATPase species that only differs from intact ATPase because of excision of the MAATE(243) sequence from the loop linking the A domain with the third transmembrane segment. The PK-treated ATPase was unable to transport Ca(2+) and to catalyze ATP hydrolysis, but it could bind two calcium ions with high affinity and react with ATP to form a classical ADP-sensitive phosphoenzyme, Ca(2)E1P, with occluded Ca(2+). The ability of Ca(2)E1P to become converted to the Ca(2+)-free ADP-insensitive form, E2P, was strongly reduced, as was the ability of PK-treated ATPase to react with orthovanadate or to form an E2P intermediate from inorganic phosphate in the absence of Ca(2+). PK-treated ATPase also reacted with thapsigargin to form a complex with altered properties, and the tryptic cleavage "T2" site in the A domain was no longer protected in the absence of Ca(2+). It is probable that disrupting the C-terminal link of the A domain with the transmembrane region severely compromises reorientation of A and P domains and the functionally critical cross-talk of these domains with the membrane-bound Ca(2+) ions.

PubMed Disclaimer

MeSH terms

LinkOut - more resources