Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;13(5):433-41.
doi: 10.1097/00001721-200207000-00008.

The frequent Marburg I polymorphism impairs the pro-urokinase activating potency of the factor VII activating protease (FSAP)

Affiliations

The frequent Marburg I polymorphism impairs the pro-urokinase activating potency of the factor VII activating protease (FSAP)

J Roemisch et al. Blood Coagul Fibrinolysis. 2002 Jul.

Abstract

The recently reported plasmatic, Factor Seven Activating Protease (FSAP), has also been found to be a potent activator of pro-urokinase [single-chain plasminogen activator, urinary type (scuPA)]. An initial epidemiological study surprisingly showed that plasmas of 5-10% of healthy blood donors had an impaired potential to activate scuPA. Analysis of the respective genomic DNAs revealed one particular single nucleotide polymorphism of FSAP resulting in an identical amino acid exchange (G511E), which correlates with the reduced activities. The corresponding mutation was named FSAP Marburg I. Thrombelastographies of wild-type and mutant plasmas were performed, facilitating the auto-activation of the intrinsic FSAP pro-enzymes by addition of dextran sulfate (DXS) and accelerated clot lysis by addition of scuPA. On these conditions, tissue-factor-induced coagulation revealed that clot lysis was significantly delayed in the Marburg I mutant plasmas as compared with wild-type plasmas. Furthermore, in the presence of DXS and scuPA, a FSAP-deficient plasma revealed significantly prolonged plasma clot lysis times, whereas the addition of purified FSAP pro-enzyme plus scuPA reversed this effect. These results support the hypothesis that FSAP contributes to the scuPA-dependent plasma fibrinolytic potential, which can be impaired in plasmas containing the FSAP Marburg I polymorphism, for instance.

PubMed Disclaimer

MeSH terms

LinkOut - more resources