Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep 27;277(39):36118-28.
doi: 10.1074/jbc.M203709200. Epub 2002 Jul 24.

Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells

Affiliations
Free article

Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells

Wen-Bin Chen et al. J Biol Chem. .
Free article

Abstract

Overexpression of the small leucine-rich proteoglycan biglycan (BGN) in fibrosis and desmoplasia results from enhanced activity of transforming growth factor-beta (TGF-beta). In pancreatic adenocarcinoma, the tumor cells themselves may contribute to BGN synthesis in vivo, since 8 of 18 different pancreatic carcinoma cell lines constitutively expressed BGN mRNA, as shown by reverse transcription-PCR analysis. In PANC-1 cells, TGF-beta1 dramatically stimulated BGN mRNA accumulation through a BGN transcription-independent, cycloheximide-sensitive mechanism and strongly increased the synthesis and release of the proteoglycan form of BGN. The ability of TGF-beta1 to induce BGN mRNA was critically dependent on Smad signaling, since 1) the up-regulation of BGN mRNA was preceded by a marked increase in Smad2 phosphorylation in TGF-beta1-treated PANC-1 cells, 2) TGF-beta1 was unable to induce BGN mRNA in pancreatic carcinoma cell lines that carry homozygous deletions of the Smad4/DPC4 gene, 3) inhibition of the Smad pathway in PANC-1 cells by transfection with a dominant negative Smad4/DPC4 mutant significantly reduced TGF-beta1-induced BGN mRNA expression, 4) stable reintroduction of wild type Smad4/DPC4 into Smad4-null CFPAC-1 cells restored the TGF-beta1 effect, and 5) overexpression of Smad2 and Smad3 in PANC-1 cells augmented TGF-beta1 induction of BGN mRNA, whereas forced expression of Smad7, an inhibitory Smad, effectively blocked it. These results clearly show that a functional Smad pathway is crucial for TGF-beta regulation of BGN mRNA expression. Since BGN has been shown to inhibit growth of pancreatic cancer cells, the Smad4/DPC4 mediation of the TGF-beta effect may represent a novel tumor suppressor function for Smad4/DPC4: antiproliferation via expression of autoinhibitory BGN.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources