Purification, overproduction, and partial characterization of beta-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathway
- PMID: 12142414
- PMCID: PMC135262
- DOI: 10.1128/JB.184.16.4442-4448.2002
Purification, overproduction, and partial characterization of beta-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathway
Abstract
Methanopterin is a folate analog involved in the C1 metabolism of methanogenic archaea, sulfate-reducing archaea, and methylotrophic bacteria. Although a pathway for methanopterin biosynthesis has been described in methanogens, little is known about the enzymes and genes involved in the biosynthetic pathway. The enzyme beta-ribofuranosylaminobenzene 5'-phosphate synthase (beta-RFAP synthase) catalyzes the first unique step to be identified in the pathway of methanopterin biosynthesis, namely, the condensation of p-aminobenzoic acid with phosphoribosylpyrophosphate to form beta-RFAP, CO2, and inorganic pyrophosphate. The enzyme catalyzing this reaction has not been purified to homogeneity, and the gene encoding beta-RFAP synthase has not yet been identified. In the present work, we report on the purification to homogeneity of beta-RFAP synthase. The enzyme was purified from the methane-producing archaeon Methanosarcina thermophila, and the N-terminal sequence of the protein was used to identify corresponding genes from several archaea, including the methanogen Methanococcus jannaschii and the sulfate-reducing archaeon Archaeoglobus fulgidus. The putative beta-RFAP synthase gene from A. fulgidus was expressed in Escherichia coli, and the enzymatic activity of the recombinant gene product was verified. A BLAST search using the deduced amino acid sequence of the beta-RFAP synthase gene identified homologs in additional archaea and in a gene cluster required for C1 metabolism by the bacterium Methylobacterium extorquens. The identification of a gene encoding a potential beta-RFAP synthase in M. extorquens is the first report of a putative methanopterin biosynthetic gene found in the Bacteria and provides evidence that the pathways of methanopterin biosynthesis in Bacteria and Archaea are similar.
Figures



Similar articles
-
Mechanism of 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate synthase, a key enzyme in the methanopterin biosynthetic pathway.J Biol Chem. 2004 Sep 17;279(38):39389-95. doi: 10.1074/jbc.M406442200. Epub 2004 Jul 15. J Biol Chem. 2004. PMID: 15262968
-
Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli.Biol Proced Online. 2003;5:69-77. doi: 10.1251/bpo48. Epub 2003 Mar 4. Biol Proced Online. 2003. PMID: 12734554 Free PMC article.
-
Novel type of ADP-forming acetyl coenzyme A synthetase in hyperthermophilic archaea: heterologous expression and characterization of isoenzymes from the sulfate reducer Archaeoglobus fulgidus and the methanogen Methanococcus jannaschii.J Bacteriol. 2002 Feb;184(3):636-44. doi: 10.1128/JB.184.3.636-644.2002. J Bacteriol. 2002. PMID: 11790732 Free PMC article.
-
Biosynthesis of the methanogenic cofactors.Vitam Horm. 2001;61:299-337. doi: 10.1016/s0083-6729(01)61010-0. Vitam Horm. 2001. PMID: 11153270 Review.
-
Methanopterin and methanogenic bacteria.Biofactors. 1988 Jan;1(1):95-103. Biofactors. 1988. PMID: 3076436 Review.
Cited by
-
Recovering from a bad start: rapid adaptation and tradeoffs to growth below a threshold density.BMC Evol Biol. 2012 Jul 4;12:109. doi: 10.1186/1471-2148-12-109. BMC Evol Biol. 2012. PMID: 22762241 Free PMC article.
-
Parallel and Divergent Evolutionary Solutions for the Optimization of an Engineered Central Metabolism in Methylobacterium extorquens AM1.Microorganisms. 2015 Apr 9;3(2):152-74. doi: 10.3390/microorganisms3020152. Microorganisms. 2015. PMID: 27682084 Free PMC article.
-
Targeting methanopterin biosynthesis to inhibit methanogenesis.Appl Environ Microbiol. 2003 Dec;69(12):7236-41. doi: 10.1128/AEM.69.12.7236-7241.2003. Appl Environ Microbiol. 2003. PMID: 14660371 Free PMC article.
-
Highlighting the Unique Roles of Radical S-Adenosylmethionine Enzymes in Methanogenic Archaea.J Bacteriol. 2022 Aug 16;204(8):e0019722. doi: 10.1128/jb.00197-22. Epub 2022 Jul 26. J Bacteriol. 2022. PMID: 35880875 Free PMC article. Review.
-
Discovery and characterization of the first archaeal dihydromethanopterin reductase, an iron-sulfur flavoprotein from Methanosarcina mazei.J Bacteriol. 2014 Jan;196(2):203-9. doi: 10.1128/JB.00457-13. Epub 2013 Aug 30. J Bacteriol. 2014. PMID: 23995635 Free PMC article.
References
-
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. - PubMed
-
- Bult, C. J., O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Blake, L. M. FitzGerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J. F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. Geoghagen, and J. C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058-1073. - PubMed
-
- Cao, H., B. L. Pietrak, and C. Grubmeyer. 2002. Quinolate phosphoribosyltransferase: Kinetic mechanism for a type II PRTase. Biochemistry 41:3520-3528. - PubMed
-
- Chistoserdova, L., J. A. Vorholt, R. K. Thauer, and M. E. Lidstrom. 1998. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281:99-102. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials