From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways
- PMID: 12142426
- PMCID: PMC135229
- DOI: 10.1128/JB.184.16.4555-4572.2002
From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways
Abstract
Novel drug targets are required in order to design new defenses against antibiotic-resistant pathogens. Comparative genomics provides new opportunities for finding optimal targets among previously unexplored cellular functions, based on an understanding of related biological processes in bacterial pathogens and their hosts. We describe an integrated approach to identification and prioritization of broad-spectrum drug targets. Our strategy is based on genetic footprinting in Escherichia coli followed by metabolic context analysis of essential gene orthologs in various species. Genes required for viability of E. coli in rich medium were identified on a whole-genome scale using the genetic footprinting technique. Potential target pathways were deduced from these data and compared with a panel of representative bacterial pathogens by using metabolic reconstructions from genomic data. Conserved and indispensable functions revealed by this analysis potentially represent broad-spectrum antibacterial targets. Further target prioritization involves comparison of the corresponding pathways and individual functions between pathogens and the human host. The most promising targets are validated by direct knockouts in model pathogens. The efficacy of this approach is illustrated using examples from metabolism of adenylate cofactors NAD(P), coenzyme A, and flavin adenine dinucleotide. Several drug targets within these pathways, including three distantly related adenylyltransferases (orthologs of the E. coli genes nadD, coaD, and ribF), are discussed in detail.
Figures






Similar articles
-
Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets.J Cell Physiol. 2011 Feb;226(2):331-40. doi: 10.1002/jcp.22419. J Cell Physiol. 2011. PMID: 20857400 Review.
-
Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.Appl Environ Microbiol. 2017 Jun 16;83(13):e00692-17. doi: 10.1128/AEM.00692-17. Print 2017 Jul 1. Appl Environ Microbiol. 2017. PMID: 28455340 Free PMC article.
-
Modular Engineering of the Flavin Pathway in Escherichia coli for Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide Production.J Agric Food Chem. 2019 Jun 12;67(23):6532-6540. doi: 10.1021/acs.jafc.9b02646. Epub 2019 Jun 3. J Agric Food Chem. 2019. PMID: 31099250
-
Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids.Biotechnol Bioeng. 2017 Sep;114(9):1928-1936. doi: 10.1002/bit.26336. Epub 2017 Jun 27. Biotechnol Bioeng. 2017. PMID: 28498544
-
A subsystems-based approach to the identification of drug targets in bacterial pathogens.Prog Drug Res. 2007;64:131, 133-70. doi: 10.1007/978-3-7643-7567-6_6. Prog Drug Res. 2007. PMID: 17195474 Review.
Cited by
-
Structural basis for competitive inhibition of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Vibrio cholerae.J Biol Chem. 2015 May 1;290(18):11293-308. doi: 10.1074/jbc.M114.611830. Epub 2015 Mar 18. J Biol Chem. 2015. PMID: 25792735 Free PMC article.
-
Essential Bacillus subtilis genes.Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4678-83. doi: 10.1073/pnas.0730515100. Epub 2003 Apr 7. Proc Natl Acad Sci U S A. 2003. PMID: 12682299 Free PMC article.
-
Identification of antibiotic stress-inducible promoters: a systematic approach to novel pathway-specific reporter assays for antibacterial drug discovery.Genome Res. 2004 Jan;14(1):90-8. doi: 10.1101/gr.1275704. Genome Res. 2004. PMID: 14707172 Free PMC article.
-
Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases.Biochemistry. 2015 Jan 20;54(2):528-37. doi: 10.1021/bi501140k. Epub 2015 Jan 5. Biochemistry. 2015. PMID: 25513739 Free PMC article.
-
Novel mutations in PANK2 and PLA2G6 genes in patients with neurodegenerative disorders: two case reports.BMC Med Genet. 2017 Aug 18;18(1):87. doi: 10.1186/s12881-017-0439-y. BMC Med Genet. 2017. PMID: 28821231 Free PMC article.
References
-
- Alm, R. A., L. S. L. Ling, D. T. Moir, B. L. King, E. D. Brown, P. C. Doig, D. R. Smith, B. Noonan, B. C. Guild, B. L. deJonge, G. Carmel, P. J. Tummino, A. Caruso, M. Uria-Nickelsen, D. M. Mills, C. Ives, R. Gibson, D. Merberg, S. D. Mills, Q. Jiang, D. E. Taylor, G. F. Vovis, and T. J. Trost. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176-180. - PubMed
-
- Arigoni, F., F. Talabot, M. Peitsch, M. D. Edgerton, E. Meldrum, E. Allet, R. Fish, T. Jamotte, M. L. Curchod, and H. Loferer. 1998. A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol. 16:851-856. - PubMed
-
- Bacher, A., S. Eberhardt, W. Eisenreich, M. Fischer, S. Herz, B. Illarionov, K. Kis, and G. Richter. 2001. Biosynthesis of riboflavin. Vitam. Horm. 61:2-49. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials