Heavy metal mining using microbes
- PMID: 12142493
- DOI: 10.1146/annurev.micro.56.012302.161052
Heavy metal mining using microbes
Abstract
The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed.
Similar articles
-
Biomineralization of metal-containing ores and concentrates.Trends Biotechnol. 2003 Jan;21(1):38-44. doi: 10.1016/s0167-7799(02)00004-5. Trends Biotechnol. 2003. PMID: 12480349 Review.
-
Genomics, metagenomics and proteomics in biomining microorganisms.Biotechnol Adv. 2006 Mar-Apr;24(2):197-211. doi: 10.1016/j.biotechadv.2005.09.004. Epub 2005 Nov 8. Biotechnol Adv. 2006. PMID: 16288845 Review.
-
Biomining: metal recovery from ores with microorganisms.Adv Biochem Eng Biotechnol. 2014;141:1-47. doi: 10.1007/10_2013_216. Adv Biochem Eng Biotechnol. 2014. PMID: 23793914 Review.
-
Thermophilic microorganisms in biomining.World J Microbiol Biotechnol. 2016 Nov;32(11):179. doi: 10.1007/s11274-016-2140-2. Epub 2016 Sep 15. World J Microbiol Biotechnol. 2016. PMID: 27628339 Review.
-
Bacterial catalytic processes for transformation of metals.Hindustan Antibiot Bull. 1993 Feb-May;35(1-2):183-9. Hindustan Antibiot Bull. 1993. PMID: 8181951 Review.
Cited by
-
Crystallization and preliminary X-ray diffraction analysis of tetrathionate hydrolase from Acidithiobacillus ferrooxidans.Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jun;69(Pt 6):692-4. doi: 10.1107/S1744309113013419. Epub 2013 May 29. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013. PMID: 23722856 Free PMC article.
-
Development and application of biotechnologies in the metal mining industry.Environ Sci Pollut Res Int. 2013 Nov;20(11):7768-76. doi: 10.1007/s11356-013-1482-7. Epub 2013 Jan 18. Environ Sci Pollut Res Int. 2013. PMID: 23329131 Review.
-
Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A.Appl Microbiol Biotechnol. 2022 Nov;106(21):6933-6952. doi: 10.1007/s00253-022-12168-7. Epub 2022 Oct 4. Appl Microbiol Biotechnol. 2022. PMID: 36194263 Free PMC article. Review.
-
Novel combination of atomic force microscopy and epifluorescence microscopy for visualization of leaching bacteria on pyrite.Appl Environ Microbiol. 2008 Jan;74(2):410-5. doi: 10.1128/AEM.01812-07. Epub 2007 Nov 26. Appl Environ Microbiol. 2008. PMID: 18039818 Free PMC article.
-
Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park.Appl Environ Microbiol. 2008 Feb;74(4):942-9. doi: 10.1128/AEM.01200-07. Epub 2007 Dec 14. Appl Environ Microbiol. 2008. PMID: 18083851 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources