Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002:135:187-96.
doi: 10.1016/S0079-6123(02)35018-0.

The role of mitochondria and oxidative stress in neuronal damage after brief and prolonged seizures

Affiliations
Review

The role of mitochondria and oxidative stress in neuronal damage after brief and prolonged seizures

Hannah R Cock. Prog Brain Res. 2002.

Abstract

Studies in vitro and in other disease states where excitotoxicity is believed to be important have demonstrated that mitochondrial function is a critical determinant of cell death, reflecting key roles in intracellular calcium homeostasis, energy production and oxidative stress. Central to this is the process of mitochondrial permeability transition, for which there are numerous influencing factors, although many, if not all, may specifically act though effects on the redox state of the cell and oxidative stress. Mitochondrial function in relation to seizure-induced cell death has been little studied until recently, but there is now accumulating evidence that similar mechanisms operate, certainly in cell death, following prolonged seizures. To what extent these same mechanisms might contribute to non-fatal but pathologically significant functional cellular changes in epilepsy, and the significance of reported free radical production after brief seizures is as yet uncertain. However, with the wide range of established techniques available to study mitochondrial function and oxidative stress, and those currently under development, these questions are undoubtedly answerable in the near future. Increased understanding of the mechanisms involved in seizure-induced cellular damage is an essential basis for the development of rational neuroprotective strategies.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources