Ordered assembly of the V(D)J synaptic complex ensures accurate recombination
- PMID: 12145216
- PMCID: PMC126141
- DOI: 10.1093/emboj/cdf394
Ordered assembly of the V(D)J synaptic complex ensures accurate recombination
Abstract
Recombination of gene segments at the immunoglobulin and T-cell receptor loci requires that the RAG1 and RAG2 proteins bring together DNA signal sequences (RSSs) with 12- and 23-bp spacers into a synaptic complex and cleave the DNA. A RAG1/2 multimer that can cleave both signals is shown to assemble on an isolated RSS, and the complementary RSS enters this complex as naked DNA. When RAG1/2 is allowed to bind 12 and 23 RSSs separately prior to their mixing, synaptic complex assembly and cleavage activity are greatly reduced, indicating that only a complex initially assembled on a single RSS leads to productive cleavage. RAG1/2 complexes assembled on 12 RSSs will only incorporate 23 partners, while complexes assembled on 23 RSSs show a 5- to 6-fold preference for 12 partners. Thus, initial assembly on a 12 RSS most accurately reflects the strict 12/23 coupled cleavage observed in the cell. Additional cellular factors such as chromatin may ensure that RAG1/2 first assembles on a 12 RSS, and then a free 23 RSS enters to activate cleavage.
Figures







References
-
- Bhasin A., Goryshin,I.Y., Steiniger-White,M., York,D. and Reznikoff,W.S. (2000) Characterization of a Tn5 pre-cleavage synaptic complex. J. Mol. Biol., 302, 49–63. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources