Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun 28;98(1-2):17-9.
doi: 10.1016/s1566-0702(02)00023-1.

Effect of dietary sodium intake on central angiotensinergic pathways

Affiliations

Effect of dietary sodium intake on central angiotensinergic pathways

Gerald F DiBona et al. Auton Neurosci. .

Abstract

The role of central angiotensinergic pathways in the cardiovascular regulation has been examined using the microinjection of angiotensin peptides and angiotensin receptor antagonists. However, in such studies, neither the overall nor the local level of activity of the renin-angiotensin system is generally known. Herein, physiological changes in the endogenous level of activity of the renin-angiotensin system were produced by alterations in the dietary sodium intake. Microinjection of the angiotensin II AT1 receptor antagonists losartan or candesartan into the rostral ventrolateral medulla produced the bradycardic, depressor and renal sympathoinhibitory responses which were greater in low sodium diet rats with stimulated activity of the renin-angiotensin system than in high sodium diet rats with suppressed activity of the renin-angiotensin system activity. The renal sympathoexcitatory responses to activation of the paraventricular nucleus by microinjection of bicuculline, known to be dependent on the excitatory synaptic inputs to the rostral ventrolateral medulla mediated by AT1 receptors, were greater in low sodium diet rats than in high sodium rats. These observations support the view that physiologically regulated angiotensin peptides of the brain origin exert a local paracrine or autocrine action on sites that influence the renal sympathetic nerve activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources