Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug;53(375):1747-51.
doi: 10.1093/jxb/erf017.

The role of gibberellins in embryo axis development

Affiliations

The role of gibberellins in embryo axis development

Dirk B Hays et al. J Exp Bot. 2002 Aug.

Abstract

The role of gibberellins (GAs) during early embryo development was examined using microspore-derived embryos (MDEs) of Brassica napus. At the globular stage of development, 10 d after initial culture (DAC) when endogenous GA(1) levels are increasing rapidly, a triazole, uniconazole, was used at 1, 33 and 100 microM to inhibit GA biosynthesis. Within this dose range there was no apparent effect of the inhibitor on embryo growth through to the early torpedo stage. However, by 25 DAC uniconazole-treated MDEs showed significantly reduced (50%) axis elongation. Addition of GA(1) at 33 microM on 14 DAC to embryos pretreated with 1 microM uniconazole on 10 DAC prevented this reduction in axis length, giving axis elongation equivalent to untreated MDEs. Application of GA(1) alone, however, did not significantly increase axis elongation. The reduced axis growth seen with uniconazole treatment was due to reduced cell elongation, but not cell number, and the co-applied GA(1) thus prevented the uniconazole-induced reduction in cell length. The elongating axis of MDEs may thus be a useful tool for examining the role of GAs in cell elongation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources