Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 12;295(2):354-61.
doi: 10.1016/s0006-291x(02)00661-7.

Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells

Affiliations

Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells

Takeshi Okamoto et al. Biochem Biophys Res Commun. .

Abstract

Mesenchymal stem cells (MSCs) are bone marrow stroma-derived cells, which can differentiate into several types of mesenchymal tissues. Although regarded as tissue-specific stem cells, human MSCs (hMSCs) have a low proliferative ability with a finite life span, which is a hurdle to further analysis of their biology. Here we attempted to establish immortalized hMSCs by retrovirus-mediated gene transfer. The gain in telomerase activity obtained on expression of human telomerase reverse transcriptase (hTERT) was found not to be enough to make the cell line immortal. A combination of hTERT with human papillomavirus E6 and E7 successfully immortalized hMSCs without affecting the potential for adipogenic, osteogenic, and chondrogenic differentiation. From the parental immortalized hMSC, 100 single-cell derived clones were established, of which the differentiation properties varied considerably, including tri-, bi-, and uni-directional clones, suggesting that hMSCs are constituted by a group of cells with different differentiation potential. These cell lines, being the first established immortalized clonal cell lines of hMSCs, could provide insights into the mechanisms regulating the early steps of differentiation from undifferentiated MSCs into a specific lineage.

PubMed Disclaimer

Publication types

LinkOut - more resources