Direct quantification of the flexibility of type I collagen monomer
- PMID: 12150960
- DOI: 10.1016/s0006-291x(02)00685-x
Direct quantification of the flexibility of type I collagen monomer
Abstract
Collagens are the most abundant structural proteins found in the extracellular matrix of vertebrates. Knowledge of the mechanical behavior of collagen monomers is essential for understanding the mechanical properties of collagen fibrils that constitute the main architectural framework of skin, bone, cartilage, and other connective tissues. In this study, the flexibility of type I collagen monomer was studied by stretching type I collagen monomers directly. The force-extension relationship was measured and analyzed by fitting the data into a worm-like chain elasticity model. The persistence length of collagen I monomer was determined to be 14.5 nm and the contour length was 309 nm. The results confirm that type I collagen monomer is flexible rather than rigid, rod-like molecule. Such flexibility may possibly be a consequence of the micro-unfolding of discrete domains of single collagen molecule.
Similar articles
-
Stretching type II collagen with optical tweezers.J Biomech. 2004 Nov;37(11):1665-9. doi: 10.1016/j.jbiomech.2004.02.028. J Biomech. 2004. PMID: 15388308
-
Environmentally Controlled Curvature of Single Collagen Proteins.Biophys J. 2018 Oct 16;115(8):1457-1469. doi: 10.1016/j.bpj.2018.09.003. Epub 2018 Sep 13. Biophys J. 2018. PMID: 30269884 Free PMC article.
-
Molecular assessment of the elastic properties of collagen-like homotrimer sequences.Biomech Model Mechanobiol. 2005 Jun;3(4):224-34. doi: 10.1007/s10237-004-0064-5. Epub 2005 Apr 12. Biomech Model Mechanobiol. 2005. PMID: 15824897
-
Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen.J Theor Biol. 2002 May 21;216(2):243-54. doi: 10.1006/jtbi.2002.2542. J Theor Biol. 2002. PMID: 12079374
-
Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues.Calcif Tissue Int. 2013 Oct;93(4):329-37. doi: 10.1007/s00223-013-9725-7. Epub 2013 Mar 31. Calcif Tissue Int. 2013. PMID: 23543143 Review.
Cited by
-
A finite dissipative theory of temporary interfibrillar bridges in the extracellular matrix of ligaments and tendons.J R Soc Interface. 2009 Oct 6;6(39):909-24. doi: 10.1098/rsif.2008.0487. Epub 2008 Dec 23. J R Soc Interface. 2009. PMID: 19106068 Free PMC article.
-
Single-Molecule Assay for Proteolytic Susceptibility: Force-Induced Collagen Destabilization.Biophys J. 2018 Feb 6;114(3):570-576. doi: 10.1016/j.bpj.2017.12.006. Biophys J. 2018. PMID: 29414702 Free PMC article.
-
Tension tests on mammalian collagen fibrils.Interface Focus. 2016 Feb 6;6(1):20150080. doi: 10.1098/rsfs.2015.0080. Interface Focus. 2016. PMID: 26855757 Free PMC article.
-
Optical Tweezers Approaches for Probing Multiscale Protein Mechanics and Assembly.Front Mol Biosci. 2020 Oct 6;7:577314. doi: 10.3389/fmolb.2020.577314. eCollection 2020. Front Mol Biosci. 2020. PMID: 33134316 Free PMC article. Review.
-
Thermal memory in self-assembled collagen fibril networks.Biophys J. 2013 Jul 2;105(1):200-10. doi: 10.1016/j.bpj.2013.05.035. Biophys J. 2013. PMID: 23823240 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources