Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug;68(2):437-43.
doi: 10.1093/toxsci/68.2.437.

Morphological transformation and oxidative stress induced by cyanide in Syrian hamster embryo (SHE) cells

Affiliations

Morphological transformation and oxidative stress induced by cyanide in Syrian hamster embryo (SHE) cells

Lisa M Kamendulis et al. Toxicol Sci. 2002 Aug.

Abstract

Cyanide is a well-established poison known for its rapid lethal action and toxicity. Although long-term mammalian studies examining the carcinogenic potential of cyanide have not been previously reported, cyanide was reported to be positive in Salmonella typhimurium mutagenesis assay and induced aneuploidy in Drosophila. To further evaluate the carcinogenic potential of cyanide, the ability of cyanide to induce morphological transformation in Syrian hamster embryo (SHE) cells was studied. Cyanide induced a dose-dependent increase in morphological transformation in SHE cells following a 7-day continuous treatment. A significant increase in transformation was observed at potassium cyanide doses of 200 microM and greater. Transformation induced by cyanide was inhibited in a dose-related manner by vitamin E, suggesting a role of oxidative stress in the induction of morphological transformation by cyanide. Further, it was shown that 500 microM cyanide induced oxidative DNA damage in SHE cells, evidenced by the formation of 8-hydroxy-2'-deoxyguanosine (50-66% increase over control). The induction of oxidative stress by cyanide involved an early and temporal inhibition of antioxidant enzymes (catalase and superoxide dismutase) as well as an increased production of reactive oxygen species (1.5- to 2.0-fold over control).

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources