Nondestructive subharmonic imaging
- PMID: 12152942
- DOI: 10.1109/tuffc.2002.1020158
Nondestructive subharmonic imaging
Abstract
Ultrasound contrast agent microbubbles are intravascular agents that can be used to estimate blood perfusion. Blood perfusion may be estimated by destroying the bubbles in a vascular bed and observing the refresh of contrast agents back into the vascular bed. Contrast agents can be readily destroyed by traditional imaging techniques. The design of a nondestructive imaging technique is necessary for the accurate quantification of contrast agent refresh. In this work, subharmonic imaging is investigated as a method for nondestructive imaging with the contrast agent microbubble MP1950 (Mallinckrodt, Inc., St. Louis, MO). Optical observation during insonation, in conjunction with a modified Rayleigh-Plesset (R-P) analysis, provides insight into the mechanisms of and parameters required for subharmonic frequency generation. Subharmonic imaging with a transmission frequency that is the same as the resonant frequency of the bubble is shown to require a minimum pressure of insonation that is greater than the experimentally-observed bubble destruction threshold. Subharmonic imaging with a transmission frequency that is twice the resonant frequency of the bubble produces a subharmonic frequency response while minimizing bubble instability. Optimization is performed using optical experimental analysis and R-P analysis.
Similar articles
-
Subharmonic backscattering from ultrasound contrast agents.J Acoust Soc Am. 1999 Oct;106(4 Pt 1):2104-10. doi: 10.1121/1.428142. J Acoust Soc Am. 1999. PMID: 10530033
-
Mechanisms of contrast agent destruction.IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jan;48(1):232-48. doi: 10.1109/58.896136. IEEE Trans Ultrason Ferroelectr Freq Control. 2001. PMID: 11367791
-
Optimisation of the transmit beam parameters for generation of subharmonic signals in native and altered populations of a commercial microbubble contrast agent SonoVue®.Phys Med. 2020 Feb;70:176-183. doi: 10.1016/j.ejmp.2020.01.017. Epub 2020 Feb 6. Phys Med. 2020. PMID: 32036334
-
A Review of Phospholipid Encapsulated Ultrasound Contrast Agent Microbubble Physics.Ultrasound Med Biol. 2019 Feb;45(2):282-300. doi: 10.1016/j.ultrasmedbio.2018.09.020. Epub 2018 Nov 7. Ultrasound Med Biol. 2019. PMID: 30413335 Review.
-
Ultrasound contrast agents: basic principles.Eur J Radiol. 1998 May;27 Suppl 2:S157-60. doi: 10.1016/s0720-048x(98)00057-6. Eur J Radiol. 1998. PMID: 9652516 Review.
Cited by
-
The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: implications for high-frequency nonlinear imaging.J Acoust Soc Am. 2013 May;133(5):3145-58. doi: 10.1121/1.4798677. J Acoust Soc Am. 2013. PMID: 23654417 Free PMC article.
-
In vitro measurement of attenuation and nonlinear scattering from echogenic liposomes.Ultrasonics. 2012 Sep;52(7):962-9. doi: 10.1016/j.ultras.2012.03.007. Epub 2012 Mar 29. Ultrasonics. 2012. PMID: 22652364 Free PMC article.
-
Contrast Agent Microbubble Jetting during Initial Interaction with 200-kHz Focused Ultrasound.Ultrasound Med Biol. 2019 Nov;45(11):3075-3080. doi: 10.1016/j.ultrasmedbio.2019.08.005. Epub 2019 Aug 30. Ultrasound Med Biol. 2019. PMID: 31477370 Free PMC article.
-
Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.Phys Med Biol. 2018 Mar 15;63(6):065009. doi: 10.1088/1361-6560/aab05c. Phys Med Biol. 2018. PMID: 29457587 Free PMC article.
-
High and low frequency subharmonic imaging of angiogenesis in a murine breast cancer model.Ultrasonics. 2015 Sep;62:50-5. doi: 10.1016/j.ultras.2015.04.012. Epub 2015 May 5. Ultrasonics. 2015. PMID: 25979676 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources