Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide
- PMID: 12160
Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide
Abstract
A 37,000 X g supernatant fraction prepared from fat lung homogenate demonstrated a 2- to 3-fold increase in guanylate cyclase activity after incubation at 30 degrees for 30 min (preincubation). Treatment of the supernatant fraction with Triton X-100 increased activity to approximately the same extent as preincubation, but would not increase the activity after preincubation. By chromatography on Sepharose 2B, before and after preincubation, it was demonstrated that the increase in activity was only associated with the soluble guanylate cyclase, and not the particulate enzyme. Activation by preincubation required O2. It was completely inhibited by thiols such as 2-mercaptoethanol, and by bovine serum albumin, KCN, and sodium diethyldithiocarbamate. These inhibitors suggested a copper requirement for activation, and this was confirmed by demonstrating that 20 to 60 muM CuCl2 could relieve the inhibition by 0.1 mM sodium diethyldithiocarbamate. 2-Mercaptoethanol inhibition could also be reversed by removal of the thiol on a Sephadex G-25 column, however, this treatment partially activated the enzyme. Addition of 2-mercaptoethanol to a preincubated preparation would not reverse the activation. H2O2 was found to activate guanylate cyclase, either by its generation in the lung supernatant with glucose oxidase and glucose, or by its addition to a preparation in which the catalase was inhibited with KCN. KCN or bovine serum albumin was able to partially inhibit activation by glucose oxidase plus glucose, however, larger amounts of glucose oxidase could overcome that inhibition, indicating a catalytic role for Cu2+ at low H2O2 concentrations. No direct evidence for H2O2 formation during preincubation could be found, however, indirect evidence was obtained by the spectrophotometric detection of choleglobin formation from hemoglobin present in the lung supernatant fluid. The H2O2 is believed to result from the reaction of oxyhemoglobin with ascorbate.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources