Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jun;102(2):68-72.

Role of antioxidants in the protection of the nitrergic neurotransmitter

Affiliations
  • PMID: 12161902
Review

Role of antioxidants in the protection of the nitrergic neurotransmitter

Erwin E Colpaert et al. Acta Neurol Belg. 2002 Jun.

Abstract

There is now compelling evidence that the L-arginine/nitric oxide (NO) pathway generates the non-adrenergic non-cholinergic (NANC) neurotransmitter which mediates smooth muscle relaxation in a variety of nitrergically-innervated tissues. However, one strange aspect of this nitrergic neurotransmission process is that certain drugs (i.e. superoxide generators and NO-scavengers) powerfully inhibit relaxations to exogenous NO, but have little or no effect on relaxations to electrical field stimulation. This thesis examined the possibility that in the nitrergically-innervated gastric fundus of the pig tissue antioxidants present in the neuroeffector junction might protect the endogenous nitrergic neurotransmitter (free radical NO) from attack by superoxide anions and scavenging activity, while exogenous NO would still be vulnerable before it reaches the nitrergic synapses within the tissue. We found that several antioxidants (in casu Cu/Zn superoxide dismutase, reduced glutathione, bilirubin) exerted a partial or complete protection of the relaxation induced by exogenous NO against the differentiating drugs under investigation. A close interrelationship between the endogenous nitrergic neurotransmitter and the antioxidants Cu/Zn superoxide dismutase and bilirubin (produced by the heme oxygenase/biliverdin reductase system) was corroborated by immunohistochemical data showing the presence of these latter defense systems in all nitrergic neurons. Pharmacological depletion further established a role for Cu/Zn superoxide dismutase in peripheral nitrergic neurotransmission. For glutathione, only a partial depletion could be obtained and this did not influence nitrergic neurotransmission.

PubMed Disclaimer

Publication types

LinkOut - more resources