Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 16;296(2):463-9.
doi: 10.1016/s0006-291x(02)00892-6.

Molecular basis of ATP-sensitive K+ channels in rat vascular smooth muscles

Affiliations

Molecular basis of ATP-sensitive K+ channels in rat vascular smooth muscles

Kun Cao et al. Biochem Biophys Res Commun. .

Abstract

ATP-sensitive K+ (K(ATP)) channels couple metabolic changes to membrane excitability in vascular smooth muscle cells (SMCs). While the electrophysiological properties of K(ATP) channels have been examined, little is known about the molecular basis of K(ATP) complex in vascular SMCs. We identified and cloned four K(ATP) subunit genes from rat mesenteric artery, namely rvKir6.1, rvKir6.2, rvKirSUR1, and rvSUR2B. These clones showed over 99.6% amino acid sequence identity with other previously reported isoforms. The mRNA expression patterns of the K(ATP) subunits varied among rat aorta, mesenteric artery, pulmonary artery, tail artery, hepatic artery, and portal vein. Heterologous co-expression of rvKir6.1 and rvSUR2B yielded functional K(ATP) channels that were inhibited by glibenclamide, and opened by pinacidil. Our results for the first time reported the expression of four K(ATP) subunits in same vascular tissues, unmasking the diversity of native K(ATP) channels in vascular SMCs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources