Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug;31(3):269-77.
doi: 10.1046/j.1365-313x.2002.01358.x.

The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis

Affiliations
Free article

The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis

Jodi Maple et al. Plant J. 2002 Aug.
Free article

Abstract

In plant cells, plastids divide by binary fission involving a complex pathway of events. Although there are clear similarities between bacterial and plastid division, limited information exists regarding the mechanism of plastid division in higher plants. Here we demonstrate that AtMinE1, an Arabidopsis homologue of the bacterial MinE topological specificity factor, is an essential integral component of the plastid division machinery. In prokaryotes MinE imparts topological specificity during cell division by blocking division apparatus assembly at sites other than midcell. We demonstrate that overexpression of AtMinE1 in E. coli results in loss of topological specificity and minicell formation suggesting evolutionary conservation of MinE mode of action. We further show that AtMinE1 can indeed act as a topological specificity factor during plastid division revealing that AtMinE1 overexpression in Arabidopsis seedlings results in division site misplacement giving rise to multiple constrictions along the length of plastids. In agreement with cell division studies in bacteria, AtMinE1 and AtMinD1 show distinct intraplastidic localisation patterns suggestive of dynamic localisation behaviour. Taken together our findings demonstrate that AtMinE1 is an evolutionary conserved topological specificity factor, most probably acting in concert with AtMinD1, required for correct plastid division in Arabidopsis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms