Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;61(1):31-5.
doi: 10.1016/s0031-9422(02)00183-8.

Polysaccharide degradation by Fenton reaction--or peroxidase-generated hydroxyl radicals in isolated plant cell walls

Affiliations

Polysaccharide degradation by Fenton reaction--or peroxidase-generated hydroxyl radicals in isolated plant cell walls

Carmen Schweikert et al. Phytochemistry. 2002 Sep.

Abstract

The formation of hydroxyl radicals (OH*) by peroxidase was confirmed by EPR spectroscopy using ethanol/alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone as a spin-trapping system specific of OH*. The effect of OH*, generated either non-enzymatically with the Fenton reaction (H(2)O(2) + Fe(2+)) or with horseradish peroxidase in the presence of O(2) and NADH, on cell walls isolated from maize (Zea mays) coleoptiles or soybean (Glycine max) hypocotyls was investigated. OH* produced by these reactions attack polysaccharides in the wall, demonstrated by the release of a heterogeneous mixture of polymeric breakdown products into the incubation medium. The peroxidase-catalyzed degradation of cell-wall polysaccharides can be inhibited by KCN and superoxide radical (O(2)*) or OH* scavengers. These data support the hypothesis that OH*, produced by cell-wall peroxidases in vivo, act as wall-loosening agents in plant extension growth.

PubMed Disclaimer

Publication types

LinkOut - more resources