Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Aug;34(8):1324-31.
doi: 10.1097/00005768-200208000-00014.

Changes in spring-mass characteristics during treadmill running to exhaustion

Affiliations
Comparative Study

Changes in spring-mass characteristics during treadmill running to exhaustion

Darren J Dutto et al. Med Sci Sports Exerc. 2002 Aug.

Abstract

Purpose: To determine whether the stiffness characteristics of the leg change during a treadmill run to voluntary exhaustion.

Methods: Fifteen runners performed a test run at a constant speed that elicited approximately 80% of their .VO(2peak). The run was performed on a treadmill instrumented to measure vertical ground reaction forces; vertical stiffness and leg stiffness were calculated from these forces. Force data were sampled for 15 s every 5 min and immediately before the end of the test. From the force data, average stiffness characteristics were determined for each sample period. An ANOVA with repeated measures (alpha = 0.01) was performed for the group on both vertical and leg stiffness. A single-subject, case-series analysis was also performed on each subject by using ANOVA (alpha = 0.01).

Results: Group analysis revealed significant decreases (P < 0.01) in both vertical (23.9 to 23.1 kN.m(-1)) and leg (9.3 to 9.0 kN.m(-1)) stiffness over the run. Based on single-subject ANOVA, 14 of the 15 runners experienced significant (P < or = 0.01) changes in k(vert) over the run. A significant correlation between changes in stride rate and vertical stiffness was found (r = 0.85). Changes in the stiffness properties of the leg, as determined via the spring-mass model, resulted in changes in vertical displacement of the center of mass and leg length (distance from ankle to hip) during stance, as opposed to changes in peak force during ground contact.

Conclusions: Observed changes in stride rate possibly result from changes in the stiffness characteristics of the leg during a run to fatigue.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources