Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jul;20(1):43-51.
doi: 10.1183/09031936.02.00263502.

NOS and COX isoforms and abnormal microvessel responses to CO2 and H+ in hyperoxia-injured lungs

Affiliations
Free article
Comparative Study

NOS and COX isoforms and abnormal microvessel responses to CO2 and H+ in hyperoxia-injured lungs

K Naoki et al. Eur Respir J. 2002 Jul.
Free article

Abstract

The aim of the present study was to compare microvessel responses to hypercapnic and isocapnic acidosis in hyperoxia-injured lungs and to assess the role of constitutive and inducible forms of nitric oxide synthase (NOS) and cyclo-oxygenase (COX). Real-time confocal luminescence microscopy was used to measure changes in the diameter of acinar arterioles, venules and capillaries in response to stimulation with hypercapnic and isocapnic acidosis in isolated rat lungs injured by 90% oxygen exposure for 48 h. Observations were made with and without inhibition of constitutive (endothelial constitutive NOS (ecNOS) and COX-1) and inducible isoforms (iNOS and COX-2) of NOS and COX. Upregulation of NOS was assessed by measuring enzyme levels in lung homogenates by Western blot analysis and enhancement of the COX-related pathway was judged from perfusate concentrations of 6-ketoprostaglandin F1alpha. ecNOS and COX-1, but not iNOS and COX-2, were upregulated in hyperoxia-injured lungs. The nitric oxide produced by ecNOS attenuated COX-1 activity in injured arterioles and venules, but carbon dioxide enhanced it, leading to paradoxical dilatation of these microvessels under hypercapnic conditions with ecNOS inhibition. Although a high hydrogen ion concentration was unnecessary for excitation of COX-1, venule constriction in response to H+ was enhanced by COX-1 inhibition. Constitutive, but not inducible, isoforms of cyclo-oxygenase and nitric oxide synthase play an important role in abnormal microvessel responses to carbon dioxide and hydrogen ions in hyperoxia-injured lungs.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources