Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 14;124(32):9622-8.
doi: 10.1021/ja0115013.

Multiple active intermediates in oxidation reaction catalyzed by synthetic heme-thiolate complex relevant to cytochrome p450

Affiliations

Multiple active intermediates in oxidation reaction catalyzed by synthetic heme-thiolate complex relevant to cytochrome p450

Noriyuki Suzuki et al. J Am Chem Soc. .

Abstract

We have studied oxidation reactions using a synthetic heme-thiolate (SR complex) in order to ascertain the contributions of multiple intermediates derived from heme-thiolate to the oxygen atom transfer reaction to substrate. First, degradation of peroxyphenylacetic acid (PPAA) was examined in the presence of various substrates. The O-O bond cleavage mode of PPAA was clearly dependent on the reactivity of the substrate, and an easily oxidizable substrate enhanced heterolytic O-O bond cleavage. Second, competitive oxidations of cyclooctane and cyclooctene were carried out with various peroxybenzoic acids containing a series of substituents at the para-position as an oxygen source. The ratios of alkane hydroxylation rate/alkene epoxidation rate were dependent on the nature of the para-substituent of the oxidant. We conclude that substrate and oxidant interact with each other during the oxygen atom transfer reaction, that is, oxidation reaction occurs before O-O bond cleavage, even in the reaction catalyzed by heme-thiolate, which is considered to promote O-O bond cleavage. The results of an (18)O-incorporation study that is frequently performed to determine the active intermediates derived from iron porphyrins were consistent with this conclusion.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources