Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;9(17):1139-45.
doi: 10.1038/sj.gt.3301787.

In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas

Affiliations

In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas

J-Y Cho et al. Gene Ther. 2002 Sep.

Abstract

Radioactive iodide uptake (RAIU) in thyroid follicular epithelial cells, mediated by the sodium iodide symporter (NIS), is the first rate-limiting step in iodide accumulation which provides a mechanism for effective radioiodide treatment for patients with thyroid cancer. We hypothesize that NIS gene transfer to non-thyroid tumor cells will enhance intracellular radioiodide accumulation and result in better tumor control. Here, we performed non-invasive tumor imaging and (131)I therapy studies using rats bearing intracerebral F98 gliomas that have been retrovirally transduced with human NIS. Our results show that: (1) NIS is expressed in the intracerebral F98/NIS gliomas; (2) F98/NIS gliomas can be imaged by (99m)TcO(4) (whose uptake is also mediated by NIS) and (123)I scintigraphy; (3) significant amounts of radioiodide were retained in the tumors at 24 h after (123)I injection; (4) RAIU and NIS expression in the thyroid gland can be reduced by feeding a thyroxine-supplemented diet; and (5) survival time was increased in rats bearing F98/hNIS tumors by (131)I treatment. These studies warrant further investigating tumor imaging and therapeutic strategies based on NIS gene transfer followed by radioiodide administration in a variety of human cancers.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources