Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Aug;18(8):1021-33.
doi: 10.1093/bioinformatics/18.8.1021.

Why are complementary DNA strands symmetric?

Affiliations
Comparative Study

Why are complementary DNA strands symmetric?

Pierre-François Baisnée et al. Bioinformatics. 2002 Aug.

Abstract

Motivation: Over sufficiently long windows, complementary strands of DNA tend to have the same base composition. A few reports have indicated that this first-order parity rule extends at higher orders to oligonucleotide composition, at least in some organisms or taxa. However, the scientific literature falls short of providing a comprehensive study of reverse-complement symmetry at multiple orders and across the kingdom of life. It also lacks a characterization of this symmetry and a convincing explanation or clarification of its origin.

Results: We develop methods to measure and characterize symmetry at multiple orders, and analyze a wide set of genomes, encompassing single- and double-stranded RNA and DNA viruses, bacteria, archae, mitochondria, and eukaryota. We quantify symmetry at orders 1 to 9 for contiguous sequences and pools of coding and non-coding upstream regions, compare the observed symmetry levels to those predicted by simple statistical models, and factor out the effect of lower-order distributions. We establish the universality and variability range of first-order strand symmetry, as well as of its higher-order extensions, and demonstrate the existence of genuine high-order symmetric constraints. We show that ubiquitous reverse-complement symmetry does not result from a single cause, such as point mutation or recombination, but rather emerges from the combined effects of a wide spectrum of mechanisms operating at multiple orders and length scales.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources