The non-Watson-Crick base pairs and their associated isostericity matrices
- PMID: 12177293
- PMCID: PMC134247
- DOI: 10.1093/nar/gkf481
The non-Watson-Crick base pairs and their associated isostericity matrices
Abstract
RNA molecules exhibit complex structures in which a large fraction of the bases engage in non-Watson-Crick base pairing, forming motifs that mediate long-range RNA-RNA interactions and create binding sites for proteins and small molecule ligands. The rapidly growing number of three-dimensional RNA structures at atomic resolution requires that databases contain the annotation of such base pairs. An unambiguous and descriptive nomenclature was proposed recently in which RNA base pairs were classified by the base edges participating in the interaction (Watson-Crick, Hoogsteen/CH or sugar edge) and the orientation of the glycosidic bonds relative to the hydrogen bonds (cis or trans). Twelve basic geometric families were identified and all 12 have been observed in crystal structures. For each base pairing family, we present here the 4 x 4 'isostericity matrices' summarizing the geometric relationships between the 16 pairwise combinations of the four standard bases, A, C, G and U. Whenever available, a representative example of each observed base pair from X-ray crystal structures (3.0 A resolution or better) is provided or, otherwise, theoretically plausible models. This format makes apparent the recurrent geometric patterns that are observed and helps identify isosteric pairs that co-vary or interchange in sequences of homologous molecules while maintaining conserved three-dimensional motifs.
Figures



























Similar articles
-
Geometric nomenclature and classification of RNA base pairs.RNA. 2001 Apr;7(4):499-512. doi: 10.1017/s1355838201002515. RNA. 2001. PMID: 11345429 Free PMC article.
-
Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.J Biomol Struct Dyn. 2008 Jun;25(6):709-32. doi: 10.1080/07391102.2008.10507216. J Biomol Struct Dyn. 2008. PMID: 18399704
-
Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs.J Phys Chem B. 2005 Jun 9;109(22):11399-410. doi: 10.1021/jp051126r. J Phys Chem B. 2005. PMID: 16852393
-
Isostericity and tautomerism of base pairs in nucleic acids.FEBS Lett. 2014 Aug 1;588(15):2464-9. doi: 10.1016/j.febslet.2014.06.031. Epub 2014 Jun 17. FEBS Lett. 2014. PMID: 24950426 Review.
-
RNA structure and dynamics: a base pairing perspective.Prog Biophys Mol Biol. 2013 Nov;113(2):264-83. doi: 10.1016/j.pbiomolbio.2013.07.003. Epub 2013 Jul 23. Prog Biophys Mol Biol. 2013. PMID: 23891726 Review.
Cited by
-
Structural features of a 3' splice site in influenza a.Biochemistry. 2015 Jun 2;54(21):3269-85. doi: 10.1021/acs.biochem.5b00012. Epub 2015 May 21. Biochemistry. 2015. PMID: 25909229 Free PMC article.
-
Environmental change exposes beneficial epistatic interactions in a catalytic RNA.Proc Biol Sci. 2012 Sep 7;279(1742):3418-25. doi: 10.1098/rspb.2012.0956. Epub 2012 Jun 20. Proc Biol Sci. 2012. PMID: 22719036 Free PMC article.
-
Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation.Molecules. 2016 Sep 27;21(10):1293. doi: 10.3390/molecules21101293. Molecules. 2016. PMID: 27689977 Free PMC article.
-
Occurrence and stability of anion-π interactions between phosphate and nucleobases in functional RNA molecules.Nucleic Acids Res. 2022 Nov 11;50(20):11455-11469. doi: 10.1093/nar/gkac1081. Nucleic Acids Res. 2022. PMID: 36416268 Free PMC article.
-
Structure of a left-handed DNA G-quadruplex.Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2729-33. doi: 10.1073/pnas.1418718112. Epub 2015 Feb 18. Proc Natl Acad Sci U S A. 2015. PMID: 25695967 Free PMC article.
References
-
- Leontis N.B. and Westhof,E. (1998) A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J. Mol. Biol., 283, 571–583. - PubMed
-
- Moore P.B. (1999) Structural motifs in RNA. Annu. Rev. Biochem., 68, 287–300. - PubMed
-
- Hoogsteen K. (1963) The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallogr., 16, 907–916.