Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;125(Pt 9):2081-8.
doi: 10.1093/brain/awf212.

Vestibular-evoked postural responses in the absence of somatosensory information

Affiliations

Vestibular-evoked postural responses in the absence of somatosensory information

Brian L Day et al. Brain. 2002 Sep.

Abstract

In order to investigate the ways in which sensory channels interact to control balance, we measured the postural response evoked by galvanic vestibular stimulation (GVS) in a rare subject (I. W.) with a large-fibre sensory neuronopathy. I. W. has no sensations of cutaneous light touch and movement/position sense below the neck, and without vision he has no knowledge of where his limbs and body are in space. He was tested with and without vision while seated. With eyes closed, I. W.'s responses to pure vestibular stimuli were an order of magnitude larger than those of healthy controls. In other respects his responses were normal. Part of this phenomenon may have been due to lack of response modification by somatosensory feedback. However, the initial development of his ground reaction force, which is the earliest mechanical indicator of the response, differed from that of a control subject from its beginning. Similarly, opening his eyes resulted in a reduction (>50%) of the response from its beginning. We propose that these early changes reflect changes in initial response selection, possibly by alterations in the gain of vestibulopostural channels. We suggest that similar gain changes operate in healthy subjects and occur through a fast dynamic process. A model is put forward in which the weight of each sensory channel is adjusted continuously in a competitive manner according to the balance-relevant information content of the other sensory channels. As a secondary issue, the nature of I. W.'s head and trunk tilt response provides insight into the question of which vestibular afferents are recruited by GVS. I. W.'s responses consisted of an initial, relatively fast tilt followed by a slower, continuous tilt. When the stimulus was turned off, his body partially tilted back at an intermediate velocity. We modelled this behaviour as the algebraic sum of a position response and a constant velocity response. We suggest that these two components arise from stimulation of otolith and semicircular canal afferents, respectively.

PubMed Disclaimer