Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;302(3):1228-37.
doi: 10.1124/jpet.102.035972.

In vitro, pharmacokinetic, and pharmacodynamic interactions of ketoconazole and midazolam in the rat

Affiliations

In vitro, pharmacokinetic, and pharmacodynamic interactions of ketoconazole and midazolam in the rat

Tsutomu Kotegawa et al. J Pharmacol Exp Ther. 2002 Sep.

Abstract

Interactions of midazolam and ketoconazole were studied in vivo and in vitro in rats. Ketoconazole (total dose of 15 mg/kg intraperitoneally) reduced clearance of intravenous midazolam (5 mg/kg) from 79 to 55 ml/min/kg (p < 0.05) and clearance of intragastric midazolam (15 mg/kg) from 1051 to 237 ml/min/kg (p < 0.05), increasing absolute bioavailability from 0.11 to 0.36 (p < 0.05). Presystemic extraction occurred mainly across the liver as opposed to the gastrointestinal tract mucosa. Midazolam increased electroencephalographic (EEG) amplitude in the beta-frequency range. Ketoconazole shifted the concentration-EEG effect relationship rightward (increase in EC(50)), probably because ketoconazole is a neutral benzodiazepine receptor ligand. Ketoconazole competitively inhibited midazolam hydroxylation by rat liver and intestinal microsomes in vitro, with nanomolar K(i) values. At a total serum ketoconazole of 2 microg/ml (3.76 microM) in vivo, the predicted reduction in clearance of intragastric midazolam by ketoconazole (to 6% of control) was slightly greater than the observed reduction in vivo (to 15% of control). However, unbound serum ketoconazole greatly underpredicted the observed clearance reduction. Although the in vitro and in vivo characteristics of midazolam in rats incompletely parallel those in humans, the experimental model can be used to assess aspects of drug interactions having potential clinical importance.

PubMed Disclaimer

Publication types

MeSH terms