Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug;40(8 Suppl):IV-75-81.
doi: 10.1097/00005650-200208001-00011.

Identifying cancer relapse using SEER-Medicare data

Affiliations

Identifying cancer relapse using SEER-Medicare data

Craig C Earle et al. Med Care. 2002 Aug.

Abstract

Introduction: Tumor registries capture valid information at the time of cancer diagnosis, but often do not conduct longitudinal follow-up evaluations. However, investigators may be interested in questions relating to subsequent relapsed disease. Linking administrative data to registry data, as in the creation of the SEER (Surveillance, Epidemiology, and End Results) and Medicare data set, can provide the ability to infer the occurrence of relapse in selected situations.

Methods: The authors created different algorithms to detect relapse of acute myelogenous leukemia (AML). A retrospective cohort of patients with AML was identified, and both their billing data and medical records were obtained. The algorithms were then applied to the billing data, the results were compared with medical record review.

Results: Eighty-nine patients were identified, of whom 22 were treated for relapsed AML. The sensitivity of the best algorithm for detecting relapse was 86%, and the specificity 99%, with a positive predictive value of 95% and a negative predictive value of 96%.

Conclusions: Identification of relapse from SEER-Medicare data using clinical algorithms is feasible for cancers where a majority of patients receive treatment for relapse, without a "watch and wait" strategy, and where that treatment is with a modality that can be detected in billing data (ie, intravenous chemotherapy, radiation, surgery, or all three). Optimal analytic situations are ones in which the investigator is mostly interested in positive predictive value, less interested in sensitivity, and wants to evaluate outcomes among those patients who receive treatment for their relapsed disease. However, the accuracy of such an approach for cancers other than AML has not yet been established.

PubMed Disclaimer

LinkOut - more resources