Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Aug 1;36(15):3326-34.
doi: 10.1021/es010204v.

Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants

Affiliations
Comparative Study

Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants

Agnes G Oomen et al. Environ Sci Technol. .

Abstract

Soil ingestion can be a major exposure route for humans to many immobile soil contaminants. Exposure to soil contaminants can be overestimated if oral bioavailability is not taken into account. Several in vitro digestion models simulating the human gastrointestinal tract have been developed to assess mobilization of contaminants from soil during digestion, i.e., bioaccessibility. Bioaccessibility is a crucial step in controlling the oral bioavailability for soil contaminants. To what extent in vitro determination of bioaccessibility is method dependent has, until now, not been studied. This paper describes a multi-laboratory comparison and evaluation of five in vitro digestion models. Their experimental design and the results of a round robin evaluation of three soils, each contaminated with arsenic, cadmium, and lead, are presented and discussed. A wide range of bioaccessibility values were found for the three soils: for As 6-95%, 1-19%, and 10-59%; for Cd 7-92%, 5-92%, and 6-99%; and for Pb 4-91%, 1-56%, and 3-90%. Bioaccessibility in many cases is less than 50%, indicating that a reduction of bioavailability can have implications for health risk assessment. Although the experimental designs of the different digestion systems are distinct, the main differences in test results of bioaccessibility can be explained on the basis of the applied gastric pH. High values are typically observed for a simple gastric method, which measures bioaccessibility in the gastric compartment at low pHs of 1.5. Other methods that also apply a low gastric pH, and include intestinal conditions, produce lower bioaccessibility values. The lowest bioaccessibility values are observed for a gastrointestinal method which employs a high gastric pH of 4.0.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources