Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Sep;2(3):191-207.
doi: 10.2174/1568009023333863.

Insulin-like growth factor receptor-1 as an anti-cancer target: blocking transformation and inducing apoptosis

Affiliations
Review

Insulin-like growth factor receptor-1 as an anti-cancer target: blocking transformation and inducing apoptosis

Yuli Wang et al. Curr Cancer Drug Targets. 2002 Sep.

Abstract

IGF-IR (Insulin-like growth factor receptor 1) is a tetrameric glycoprotein composed of two alpha and two beta subunits. The alpha subunit localizes extra-cellularly for ligand binding, whereas the beta subunit consists of transmembrane chains and a cytoplasmic tyrosine kinase domain for enzymatic activity. IGF-IR ligands, IGF-I and IGF-II, are mitogens and survival factors for many cancer cells. Binding of ligands to the IGF-IR initiates a cascade of events leading to activation of signal transduction pathways, mainly MAPK and PI-3K pathways, to stimulate proliferation/mitogenesis, to induce neoplastic transformation, to inhibit apoptosis, and to promote angiogenesis and metastasis. It has been shown that the presence of IGF-IR was required for transformation induced by many oncogenes and over-expression or constitutive activation of IGF-IR gave rise to transformed phenotypes. Significantly, over-expression of IGF-IR was observed in multiple human cancers including carcinomas of breast, lung, colon, and prostate. Patients with IGF-IR positive cancers had a worse prognosis in some cases. Furthermore, down-regulation or functional inactivation of IGF-IR sensitized tumor cells to apoptosis and reversed tumor cell phenotype. Thus, IGF-IR appears to be a promising cancer target. Indeed, a variety of approaches aimed at targeting IGF-IR have been utilized to prove the concept, or are being developed for potential anticancer therapies. These include targeting functional IGF-IR on cell surface, targeting ligand/receptor interaction, targeting receptor expression and functions, and targeting receptor kinase activity. Cancer patients could eventually benefit from the development of these specific IGF-IR antagonists.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms