Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;52(3):325-32.
doi: 10.1203/00006450-200209000-00004.

Angiotensin converting enzyme inhibition decreases cell turnover in the neonatal rat heart

Affiliations

Angiotensin converting enzyme inhibition decreases cell turnover in the neonatal rat heart

Jeong Hoon Choi et al. Pediatr Res. 2002 Sep.

Abstract

The renin angiotensin system plays an important role in growth and development. Exposure of the neonate to an ACE inhibitor increases mortality and results in growth retardation and abnormal development. We have demonstrated that ACE inhibition in the developing kidney increases apoptosis and decreases cell proliferation, which may account for renal growth impairment. To evaluate the role of endogenous angiotensin in cardiac development, the relationship between ACE inhibition, cell proliferation, apoptosis, several modulators of apoptosis (bcl-2, bcl-xl, and clusterin) was examined in the developing rat heart. Thirty-five newborn rat pups were treated with enalapril (30 mg/kg/d) or a vehicle (control group) for 7 d, and hearts were removed for rt-PCR and Western blotting of bcl-2, bcl-xl, and clusterin. An additional 10 rat pups were treated with hydralazine (10 mg/kg/d) or a vehicle, to serve as a hypotensive control. Cell proliferation was determined by PCNA immunostaining, and apoptosis was detected using the total TUNEL technique. Enalapril treatment resulted in a 24% mortality, reduced body weight, and decreased heart weight (p < 0.05). Enalapril decreased proliferating myocytes by 23%, and reduced proliferating cardiac interstitial cells by 8.1% (p < 0.05). Enalapril also decreased myocytes apoptosis by 60%, but the proportion of myocytes undergoing apoptosis was 10-fold less than that of proliferating cells. Cardiac bcl-2 mRNA, clusterin mRNA, bcl-2 protein, and bcl-xl protein content were not changed, but clusterin protein expression was decreased by enalapril treatment. Hydralazine did not alter cardiac cell proliferation or apoptosis. We conclude that ACE inhibition decreases cell turnover in the developing rat heart, which may contribute to cardiac growth impairment. The loss of myocytes may lead to greater myocyte hypertrophy and myocardial damage during later life.

PubMed Disclaimer

Comment in

Publication types

MeSH terms