Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 1;277(44):42097-104.
doi: 10.1074/jbc.M206725200. Epub 2002 Aug 22.

The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues

Affiliations
Free article

The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues

Jerome Deval et al. J Biol Chem. .
Free article

Abstract

Nucleoside analogues are currently used to treat human immunodeficiency virus infections. The appearance of up to five substitutions (A62V, V75I, F77L, F116Y, and Q151M) in the viral reverse transcriptase promotes resistance to these drugs, and reduces efficiency of the antiretroviral chemotherapy. Using pre-steady state kinetics, we show that Q151M and A62V/V75I/F77L/F116Y/Q151M substitutions confer to reverse transcriptase (RT) the ability to discriminate an analogue relative to its natural counterpart, and have no effect on repair of the analogue-terminated DNA primer. Discrimination results from a selective decrease of the catalytic rate constant k(pol): 18-fold (from 7 to 0.3 s(-1)), 13-fold (from 1.9 to 0.14 s(-1)), and 12-fold (from 13 to 1 s(-1)) in the case of ddATP, ddCTP, and 3'-azido-3'-deoxythymidine 5'-triphosphate (AZTTP), respectively. The binding affinities of the triphosphate analogues for RT remain unchanged. Molecular modeling explains drug resistance by a selective loss of electrostatic interactions between the analogue and RT. Resistance was overcome using alpha-boranophosphate nucleotide analogues. Using A62V/V75I/F77L/F116Y/Q151M RT, k(pol) increases up to 70- and 13-fold using alpha-boranophosphate-ddATP and alpha-boranophosphate AZTTP, respectively. These results highlight the general capacity of such analogues to circumvent multidrug resistance when RT-mediated nucleotide resistance originates from the selective decrease of the catalytic rate constant k(pol).

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources