Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;55(6):578-84.
doi: 10.7164/antibiotics.55.578.

Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18

Affiliations
Free article

Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18

Hiroshi Naganawa et al. J Antibiot (Tokyo). 2002 Jun.
Free article

Abstract

The biosynthetic pathway leading to the cyclitol moiety of pyralomicin 1a (1) in Nonomuraea spiralis MI178-34F18 has been studied using a series of 2H-labeled potential precursors. The results demonstrate that 2-epi-5-epi-valiolone (7), a common precursor for acarbose (4) and validamycin A (5) biosynthesis, is an immediate precursor of pyralomicin 1a. 5-epi-Valiolone (8) was also incorporated into 1, albeit less efficiently than 7. Other potential intermediates, such as valiolone (9), valienone (10), valienol (11), 1-epi-valienol (12), 5-epi-valiolol (13), and 1-epi-5-epi-valiolol (14) were not incorporated into pyralomicin 1a. To explain this surprising observation, it is proposed that either 2-epi-5-epi-valiolone (7) is specifically activated (e.g., to its phosphate) and that the further transformations take place on activated intermediates (which can not be generated directly from their unactivated counterparts), or that the transformation of 7 into 1 involves a substrate-channeling mechanism in which enzyme-bound intermediates are directly transferred from one enzyme active site to the next in a multi-enzyme complex.

PubMed Disclaimer