Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;51(9):2757-63.
doi: 10.2337/diabetes.51.9.2757.

Glucose-sensing in glucagon-like peptide-1-secreting cells

Affiliations

Glucose-sensing in glucagon-like peptide-1-secreting cells

Frank Reimann et al. Diabetes. 2002 Sep.

Abstract

Glucagon-like peptide-1 (GLP-1) is released from intestinal L-cells in response to carbohydrate and fat in the diet. Despite the interest in GLP-1 as an antidiabetic agent, very little is known about the mechanism of stimulus-secretion coupling in L-cells. We investigated the electrophysiological events underlying glucose-induced GLP-1 release in the GLP-1-secreting cell line, GLUTag. Cells were studied using perforated-patch and standard whole-cell patch clamp recordings. GLUTag cells were largely quiescent and hyperpolarized in the absence of glucose. Increasing the glucose concentration between 0 and 20 mmol/l decreased the membrane conductance, caused membrane depolarization, and triggered the generation of action potentials. Action potentials were also triggered by tolbutamide (500 micro mol/l) and were suppressed by diazoxide (340 micro mol/l) or the metabolic inhibitor azide (3 mmol/l), suggesting an involvement of K(ATP) channels. Large tolbutamide-sensitive washout currents developed in standard whole-cell recordings, confirming the presence of K(ATP) channels. RT-PCR detected the K(ATP) channel subunits Kir6.2 and SUR1 and glucokinase. GLP-1 secretion was also stimulated by glucose over the concentration range 0-25 mmol/l and by tolbutamide. Our results suggest that glucose triggers GLP-1 release through closure of K(ATP) channels and action potential generation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources