Distinct regulation of genes by bFGF and VEGF-A in endothelial cells
- PMID: 12197476
- DOI: 10.1023/a:1016080321956
Distinct regulation of genes by bFGF and VEGF-A in endothelial cells
Abstract
A finely tuned balance of angiogenic inhibitors and inducers controls the activity of angiogenesis characterized by proliferation, migration and differentiation of endothelial cells. Among many angiogenic factors, basic fibroblast growth factor (bFGF) was first identified to be angiogenic whereas vascular endothelial growth factor A (VEGF-A) is an endothelial cell specific mitogen. In addition to being a specific mitogen, VEGF-A is also known as a vascular permeability factor. The majority of growth factors transduce their mitogenic signals from cell surface to nucleus where gene expression occurs. Whether these ligands utilize a distinct or a common molecular pathway to exert their biological effects on human endothelial cells remains elusive. We thus studied the expression profile of 884 human genes under the influence of either bFGF or VEGF-A alone in the context of human endothelial cells. A total of ninety-four genes were differentially regulated by more than two folds. The expression patterns of 32 genes are similar between the treatment of either factor alone whereas those of the remaining 62 genes are only regulated by one but not the other factor. Their function in the control of angiogenesis will be discussed and apoptotic signaling in the regulation of angiogenesis is also implicated.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases