Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;95(3):650-5, table of contents.
doi: 10.1097/00000539-200209000-00029.

Small carbon monoxide formation in absorbents does not correlate with small carbon dioxide absorption

Affiliations

Small carbon monoxide formation in absorbents does not correlate with small carbon dioxide absorption

Erich Knolle et al. Anesth Analg. 2002 Sep.

Abstract

In this study we sought to determine whether an absorbent in which little carbon monoxide (CO) forms has a correspondingly small capacity to absorb carbon dioxide (CO(2)). Completely dried samples (600 g) of Baralyme (A), Drägersorb 800 (B), Drägersorb 800 Plus (C), Intersorb (D), Spherasorb (E), LoFloSorb (F), Superia (G), and Amsorb (H) were exposed to a flow of 0.5% (A-H; n = 4-5) and 4% isoflurane (F-H; n = 3) in pure oxygen at 5 L/min for 60 min. Downstream CO concentration, temperature, and isoflurane concentration were recorded every 60 s to calculate CO formation and isoflurane loss. The CO(2) absorption capacity of each brand was determined by passing 5.1% CO(2) in oxygen (flow, 250 mL/min) through untreated samples (30 g; n = 5) until the outlet CO(2) concentration reached 0.5%. CO formation was largest in absorbents containing potassium hydroxide (A and B) and negligible in absorbents not containing any alkali hydroxide (F-H). The outlet temperature correlated with CO formation, but the isoflurane loss did not. The duration of CO(2) absorption also did not correlate with CO formation. We conclude that absorbents that allow only very little CO formation are not necessarily poor CO(2) absorbents.

Implications: In an in vitro study, carbon dioxide (CO(2)) absorption capacity and possible carbon monoxide (CO) formation were tested in different absorbent brands. Absorbents with very small CO formation are not necessarily poor CO(2) absorbents.

PubMed Disclaimer

Publication types

LinkOut - more resources