Characterization of baboon anti-porcine IgG antibodies during acute vascular rejection of porcine kidney xenograft
- PMID: 12199865
- DOI: 10.1034/j.1399-3089.2002.01090.x
Characterization of baboon anti-porcine IgG antibodies during acute vascular rejection of porcine kidney xenograft
Abstract
In the pig-to-baboon model, the removal of anti-porcine natural antibodies abrogates hyperacute vascular rejection (HAVR), but the xenograft then undergoes an acute vascular rejection (AVR) concomitantly to the appearance of newly formed anti-porcine antibodies. The use of anti-IgM monoclonal antibody (mAb) in baboons allowed to avoid HAVR of pig-to-baboon renal xenografts, but, at post-operative day 6, AVR occurred because of a rapid return of anti-porcine antibodies. The aim of this work was to characterize the anti-porcine antibodies during AVR. Sera from anti-IgM-treated animals were assessed prior to the graft and at the time of AVR by enzyme linked immunosorbent assay (ELISA) to determine anti-porcine antibodies concentration as well as the IgG subtypes. The same sera were tested on confluent cultures of porcine aortic endothelial cells (PAECs) to assess (i) the cytolytic complement-dependent activity and (ii) the E-selectin expression. The K affinity of anti-Gal IgG antibodies was measured by ELISA. Anti-porcine (Gal and non-Gal) IgG antibodies were tested on PAECs by flow cytometry to discriminate the presence of Gal epitopes from the recognition of other porcine epitopes. We found that both anti-porcine IgM and IgG antibodies presented a significantly increased cytolytic activity and E-selectin expression on PAECs during AVR. These characteristics are related to an important increase of the antibody (Ab) titer (especially anti-galactosyl) and a switch to anti-galactosyl IgG1 subclass production, whereas the K affinity remained unchanged. The deleterious effects of both IgM and IgG antibodies observed during AVR showed the crucial need for treatment controlling the cells producing anti-porcine antibodies.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
