Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov;34(11):1340-54.
doi: 10.1016/s1357-2725(02)00038-9.

Molecular mechanisms linking calorie restriction and longevity

Affiliations
Review

Molecular mechanisms linking calorie restriction and longevity

B J Merry. Int J Biochem Cell Biol. 2002 Nov.

Abstract

Calorie-restricted feeding retards the rate of ageing in mammalian and invertebrate species. The molecular mechanisms underlying this effect include a lower rate of accrual of tissue oxidative damage that is associated with a significantly lower rate of mitochondrial free radical generation in rodent species. To identify the important sites of control and regulation for mitochondrial free radical generation during ageing and calorie-restricted feeding, metabolic control analysis is being applied to the study of mitochondrial bioenergetics. With ageing an increase in the mitochondrial proton leak is observed in mouse hepatocytes and in rat skeletal muscle. Limited data suggest that calorie-restricted feeding lowers the inner mitochondrial membrane potential and this may explain the reduced rate of free radical generation. A lowered unsaturation/saturation index is observed for mitochondrial membrane lipids in calorie-restricted rodents resulting in an altered membrane structure and function. Plasma concentrations of insulin and triiodothyronine are significantly lower under calorie-restricted feeding conditions and these hormones exert transcriptional control over desaturase enzymes that are important in the control of membrane lipid unsaturation. A loss of double bonds should make the mitochondrial membranes more resistant to peroxidation damage and would also reduce the proton conductance of the membrane, raising the membrane potential at a given respiration rate. This effect however, appears to be offset by other membrane changes that may include increased activity of uncoupling proteins. These unidentified adaptations increase the proton leak in calorie-restricted animals resulting in a lowering of the membrane potential and ROS generation.

PubMed Disclaimer

LinkOut - more resources