Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 15;277(46):44485-96.
doi: 10.1074/jbc.M206235200. Epub 2002 Aug 27.

Osteopontin transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator protein-1 activities

Affiliations
Free article

Osteopontin transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator protein-1 activities

Miri Bidder et al. J Biol Chem. .
Free article

Abstract

The expression of the matrix cytokine osteopontin (OPN) is up-regulated in aortic vascular smooth muscle cells (VSMCs) by diabetes. OPN expression in cultured VSMCs is reciprocally regulated by glucose and 2-deoxyglucose (2-DG; inhibitor of cellular glucose metabolism). Systematic analyses of OPN promoter-luciferase reporter constructs identify a CCTCATGAC motif at nucleotides -80 to -72 relative to the initiation site that supports OPN transcription in VSMCs. The region -83 to -45 encompassing this motif confers basal and glucose- and 2-DG-dependent transcription on an unresponsive promoter. Competition and gel mobility supershift assays identify upstream stimulatory factor (USF; USF1:USF2) and activator protein-1 (AP1; c-Fos:c-Jun) in complexes binding the composite CCTCATGAC element. Glucose up-regulates both AP1 and USF binding activities 2-fold in A7r5 cells and selectively up-regulates USF1 protein levels. By contrast, USF (but not AP1) binding activity is suppressed by 2-DG and restored by glucose treatment. Expression of either USF or AP1 activates the proximal OPN promoter in A7r5 VSMCs in part via the CCTCATGAC element. Moreover, glucose stimulates the transactivation functions of c-Fos and USF1, but not c-Jun, in one-hybrid assays. Mannitol does not regulate binding, transactivation functions, USF1 protein accumulation, or OPN transcription. Thus, OPN gene transcription is regulated by USF and AP1 in aortic VSMCs, entrained to changes in cellular glucose metabolism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources