Continuum electrostatics fails to describe ion permeation in the gramicidin channel
- PMID: 12202360
- PMCID: PMC1302233
- DOI: 10.1016/S0006-3495(02)73905-2
Continuum electrostatics fails to describe ion permeation in the gramicidin channel
Abstract
We investigate the validity of continuum electrostatics in the gramicidin A channel using a recently determined high-resolution structure. The potential and electric field acting on ions in and around the channel are computed by solving Poisson's equation. These are then used in Brownian dynamics simulations to obtain concentration profiles and the current passing through the channel. We show that regardless of the effective dielectric constant used for water in the channel or the channel protein, it is not possible to reproduce all the experimental data on gramicidin A; thus, continuum electrostatics cannot provide a valid framework for the description of ion dynamics in gramicidin channels. Using experimental data and molecular dynamics simulations as guides, we have constructed potential energy profiles that can satisfactorily describe the available physiological data. These profiles provide useful benchmarks for future potential of mean force calculations of permeating ions from molecular dynamics simulations of gramicidin A. They also offer a convenient starting point for studying structure-function relationships in modified gramicidin channels.
Similar articles
-
Role of protein flexibility in ion permeation: a case study in gramicidin A.Biophys J. 2006 Apr 1;90(7):2285-96. doi: 10.1529/biophysj.105.073205. Epub 2006 Jan 13. Biophys J. 2006. PMID: 16415054 Free PMC article.
-
The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.Biophys J. 2003 Jun;84(6):3646-61. doi: 10.1016/S0006-3495(03)75095-4. Biophys J. 2003. PMID: 12770873 Free PMC article.
-
Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.Eur Biophys J. 2005 May;34(3):208-16. doi: 10.1007/s00249-004-0442-z. Epub 2004 Nov 5. Eur Biophys J. 2005. PMID: 15536565
-
Theoretical and computational models of biological ion channels.Q Rev Biophys. 2004 Feb;37(1):15-103. doi: 10.1017/s0033583504003968. Q Rev Biophys. 2004. PMID: 17390604 Review.
-
Simulations of ion channels--watching ions and water move.Trends Biochem Sci. 2000 Aug;25(8):368-74. doi: 10.1016/s0968-0004(00)01613-3. Trends Biochem Sci. 2000. PMID: 10916155 Review.
Cited by
-
Molecular simulations of ion channels: a quantum chemist's perspective.J Gen Physiol. 2010 Jun;135(6):549-54. doi: 10.1085/jgp.201010404. J Gen Physiol. 2010. PMID: 20513756 Free PMC article. No abstract available.
-
Diffusion constant of K+ inside Gramicidin A: a comparative study of four computational methods.Biophys Chem. 2006 Dec 1;124(3):268-78. doi: 10.1016/j.bpc.2006.03.019. Epub 2006 Apr 6. Biophys Chem. 2006. PMID: 16797116 Free PMC article.
-
Computational Investigation of the Effect of Lipid Membranes on Ion Permeation in Gramicidin A.Membranes (Basel). 2016 Mar 18;6(1):20. doi: 10.3390/membranes6010020. Membranes (Basel). 2016. PMID: 26999229 Free PMC article.
-
Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications.Physiol Rev. 2013 Apr;93(2):767-802. doi: 10.1152/physrev.00035.2012. Physiol Rev. 2013. PMID: 23589832 Free PMC article. Review.
-
Synthetic chloride-selective carbon nanotubes examined by using molecular and stochastic dynamics.Biophys J. 2010 Sep 22;99(6):1734-42. doi: 10.1016/j.bpj.2010.06.034. Biophys J. 2010. PMID: 20858417 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources