Asymmetrical membranes and surface tension
- PMID: 12202370
- PMCID: PMC1302243
- DOI: 10.1016/S0006-3495(02)73915-5
Asymmetrical membranes and surface tension
Abstract
The (31)P-nuclear magnetic resonance chemical shift of phosphatidic acid in a membrane is sensitive to the lipid head group packing and can report qualitatively on membrane lateral compression near the aqueous interface. We have used high-resolution (31)P-nuclear magnetic resonance to evaluate the lateral compression on each side of asymmetrical lipid vesicles. When monooleoylphosphatidylcholine was added to the external monolayer of sonicated vesicles containing dioleoylphosphatidylcholine and dioleoylphosphatidic acid, the variation of (31)P chemical shift of phosphatidic acid indicated a lateral compression in the external monolayer. Simultaneously, a slight dilation was observed in the inner monolayer. In large unilamellar vesicles on the other hand the lateral pressure increased in both monolayers after asymmetrical insertion of monooleoylphosphatidylcholine. This can be explained by assuming that when monooleoylphosphatidylcholine is added to large unilamellar vesicles, the membrane bends until the strain is the same in both monolayers. In the case of sonicated vesicles, a change of curvature is not possible, and therefore differential packing in the two layers remains. We infer that a variation of lipid asymmetry by generating a lateral strain in the membrane can be a physiological way of modulating the conformation of membrane proteins.
Similar articles
-
Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance.Eur Biophys J. 2000;29(3):184-95. doi: 10.1007/s002490000077. Eur Biophys J. 2000. PMID: 10968210
-
Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranes.Biophys J. 1996 Jul;71(1):257-73. doi: 10.1016/S0006-3495(96)79222-6. Biophys J. 1996. PMID: 8804609 Free PMC article.
-
Packing constraints and electrostatic surface potentials determine transmembrane asymmetry of phosphatidylethanol.Biophys J. 1997 Jun;72(6):2588-98. doi: 10.1016/S0006-3495(97)78902-1. Biophys J. 1997. PMID: 9168034 Free PMC article.
-
How lipid flippases can modulate membrane structure.Biochim Biophys Acta. 2008 Jul-Aug;1778(7-8):1591-600. doi: 10.1016/j.bbamem.2008.03.007. Epub 2008 Apr 1. Biochim Biophys Acta. 2008. PMID: 18439418 Review.
-
Langmuir monolayers as models to study processes at membrane surfaces.Adv Colloid Interface Sci. 2014 Jun;208:197-213. doi: 10.1016/j.cis.2014.02.013. Epub 2014 Feb 22. Adv Colloid Interface Sci. 2014. PMID: 24612663 Review.
Cited by
-
Enzymatic trans-bilayer lipid transport: Mechanisms, efficiencies, slippage, and membrane curvature.Biochim Biophys Acta Biomembr. 2021 Mar 1;1863(3):183534. doi: 10.1016/j.bbamem.2020.183534. Epub 2020 Dec 17. Biochim Biophys Acta Biomembr. 2021. PMID: 33340491 Free PMC article. Review.
-
Methyl-β-cyclodextrin asymmetrically extracts phospholipid from bilayers, granting tunable control over differential stress in lipid vesicles.Soft Matter. 2024 May 29;20(21):4291-4307. doi: 10.1039/d3sm01772a. Soft Matter. 2024. PMID: 38758097 Free PMC article.
-
Unraveling electronic energy transfer in single conjugated polyelectrolytes encapsulated in lipid vesicles.Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17480-5. doi: 10.1073/pnas.1008068107. Epub 2010 Sep 27. Proc Natl Acad Sci U S A. 2010. PMID: 20876146 Free PMC article.
-
Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers.J R Soc Interface. 2018 Nov 21;15(148):20180610. doi: 10.1098/rsif.2018.0610. J R Soc Interface. 2018. PMID: 30464059 Free PMC article.
-
Surfactant assemblies and their various possible roles for the origin(s) of life.Orig Life Evol Biosph. 2006 Apr;36(2):109-50. doi: 10.1007/s11084-005-9004-3. Epub 2006 Apr 27. Orig Life Evol Biosph. 2006. PMID: 16642266
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources