Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep 5;21(39):6017-31.
doi: 10.1038/sj.onc.1205877.

Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability

Affiliations

Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability

Andrei V Budanov et al. Oncogene. .

Abstract

cDNA microarray hybridization was used in an attempt to identify novel genes participating in cellular responses to prolonged hypoxia. One of the identified novel genes, designated Hi95 shared significant homology to a p53-regulated GADD family member PA26. In addition to its induction in response to prolonged hypoxia, the increased Hi95 transcription was observed following DNA damage or oxidative stress, but not following hyperthermia or serum starvation. Whereas induction of Hi95 by prolonged hypoxia or by oxidative stress is most likely p53-independent, its induction in response to DNA damaging treatments (gamma- or UV-irradiation, or doxorubicin) occurs in a p53-dependent manner. Overexpression of Hi95 full-length cDNA was found toxic for many types of cultured cells directly leading either to their apoptotic death or to sensitization to serum starvation and DNA damaging treatments. Unexpectedly, conditional overexpression of the Hi95 cDNA in MCF7-tet-off cells resulted in their protection against cell death induced by hypoxia/glucose deprivation or H(2)O(2). Thus, Hi95 gene seems to be involved in complex regulation of cell viability in response to different stress conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources