Engineering soluble proteins for structural genomics
- PMID: 12205510
- DOI: 10.1038/nbt732
Engineering soluble proteins for structural genomics
Abstract
Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.
Similar articles
-
Gene expression response to misfolded protein as a screen for soluble recombinant protein.Protein Eng. 2002 Feb;15(2):153-60. doi: 10.1093/protein/15.2.153. Protein Eng. 2002. PMID: 11917152
-
Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine.Biochem Biophys Res Commun. 2003 Dec 26;312(4):1383-6. doi: 10.1016/j.bbrc.2003.11.055. Biochem Biophys Res Commun. 2003. PMID: 14652027
-
Nucleoside diphosphate kinase from the hyperthermophilic archaeon Methanococcus jannaschii: overexpression, crystallization and preliminary X-ray crystallographic analysis.Acta Crystallogr D Biol Crystallogr. 2000 Nov;56(Pt 11):1485-7. doi: 10.1107/s0907444900011240. Acta Crystallogr D Biol Crystallogr. 2000. PMID: 11053861
-
Genetic screens and directed evolution for protein solubility.Curr Opin Chem Biol. 2003 Feb;7(1):33-8. doi: 10.1016/s1367-5931(02)00017-0. Curr Opin Chem Biol. 2003. PMID: 12547424 Review.
-
The use of recombinant methods and molecular engineering in protein crystallization.Methods. 2004 Nov;34(3):354-63. doi: 10.1016/j.ymeth.2004.03.024. Methods. 2004. PMID: 15325653 Review.
Cited by
-
Conversion of scFv peptide-binding specificity for crystal chaperone development.Protein Eng Des Sel. 2011 May;24(5):419-28. doi: 10.1093/protein/gzq120. Epub 2011 Jan 8. Protein Eng Des Sel. 2011. PMID: 21217145 Free PMC article.
-
Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation.Int Rev Cell Mol Biol. 2013;302:221-78. doi: 10.1016/B978-0-12-407699-0.00004-2. Int Rev Cell Mol Biol. 2013. PMID: 23351712 Free PMC article. Review.
-
A rapid protein folding assay for the bacterial periplasm.Protein Sci. 2010 May;19(5):1079-90. doi: 10.1002/pro.388. Protein Sci. 2010. PMID: 20440843 Free PMC article.
-
Automated main-chain model building by template matching and iterative fragment extension.Acta Crystallogr D Biol Crystallogr. 2003 Jan;59(Pt 1):38-44. doi: 10.1107/s0907444902018036. Epub 2002 Dec 19. Acta Crystallogr D Biol Crystallogr. 2003. PMID: 12499537 Free PMC article.
-
A simple, robust, broadly applicable insertion mutagenesis method to create random fluorescent protein: target protein fusions.G3 (Bethesda). 2024 May 7;14(5):jkae036. doi: 10.1093/g3journal/jkae036. G3 (Bethesda). 2024. PMID: 38366837 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources