CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation
- PMID: 12206456
- DOI: 10.1016/s0079-6603(02)72074-6
CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation
Abstract
The repetitive C-terminal domain (CTD) of the largest RNA polymerase II subunit plays a critical role in the regulation of gene expression. The activity of the CTD is dependent on its state of phosphorylation. A variety of CTD kinases act on RNA polymerase II at specific steps in the transcription cycle and preferentially phosphorylate distinct positions within the CTD consensus repeat. A single CTD phosphatase has been identified and characterized that in concert with CTD kinases establishes the level of CTD phosphorylation. The involvement of CTD phosphatase in controlling the progression of RNAP II around the transcription cycle, the mobilization of stored RNAP IIO, and the regulation of transcript elongation and RNA processing is discussed.
Similar articles
-
Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins.J Mol Biol. 2004 Jan 9;335(2):415-24. doi: 10.1016/j.jmb.2003.10.036. J Mol Biol. 2004. PMID: 14672652
-
Expression and characterization of HSPC129, a RNA polymerase II C-terminal domain phosphatase.Mol Cell Biochem. 2007 Sep;303(1-2):183-8. doi: 10.1007/s11010-007-9472-z. Epub 2007 May 9. Mol Cell Biochem. 2007. PMID: 17487459
-
C-terminal domain phosphatase sensitivity of RNA polymerase II in early elongation complexes on the HIV-1 and adenovirus 2 major late templates.J Biol Chem. 2000 Oct 20;275(42):32430-7. doi: 10.1074/jbc.M005898200. J Biol Chem. 2000. PMID: 10938286
-
Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases.Front Biosci. 2001 Oct 1;6:D1358-68. doi: 10.2741/majello. Front Biosci. 2001. PMID: 11578967 Review.
-
Phosphorylation of the C-terminal domain of RNA polymerase II.Biochim Biophys Acta. 1995 Apr 4;1261(2):171-82. doi: 10.1016/0167-4781(94)00233-s. Biochim Biophys Acta. 1995. PMID: 7711060 Review.
Cited by
-
Chloramphenicol inhibits eukaryotic Ser/Thr phosphatase and infection-specific cell differentiation in the rice blast fungus.Sci Rep. 2019 Jun 26;9(1):9283. doi: 10.1038/s41598-019-41039-x. Sci Rep. 2019. PMID: 31243315 Free PMC article.
-
Genetic interactions between an RNA polymerase II phosphatase and centromeric elements in Saccharomyces cerevisiae.Mol Genet Genomics. 2004 Jun;271(5):603-15. doi: 10.1007/s00438-004-1009-5. Epub 2004 May 6. Mol Genet Genomics. 2004. PMID: 15133655
-
Architecture of initiation-competent 12-subunit RNA polymerase II.Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6964-8. doi: 10.1073/pnas.1030608100. Epub 2003 May 13. Proc Natl Acad Sci U S A. 2003. PMID: 12746495 Free PMC article.
-
Regulation of delta-aminolevulinic acid dehydratase by krüppel-like factor 1.PLoS One. 2012;7(10):e46482. doi: 10.1371/journal.pone.0046482. Epub 2012 Oct 3. PLoS One. 2012. PMID: 23056320 Free PMC article.
-
Arabidopsis carboxyl-terminal domain phosphatase-like isoforms share common catalytic and interaction domains but have distinct in planta functions.Plant Physiol. 2006 Oct;142(2):586-94. doi: 10.1104/pp.106.084939. Epub 2006 Aug 11. Plant Physiol. 2006. PMID: 16905668 Free PMC article.