Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 23;321(4):703-14.
doi: 10.1016/s0022-2836(02)00419-9.

Domain organization of D-AKAP2 revealed by enhanced deuterium exchange-mass spectrometry (DXMS)

Affiliations

Domain organization of D-AKAP2 revealed by enhanced deuterium exchange-mass spectrometry (DXMS)

Yoshitomo Hamuro et al. J Mol Biol. .

Abstract

Dual specific A-kinase anchoring protein 2 (D-AKAP2) is a scaffold protein that coordinates cAMP-mediated signaling complexes by binding to type I and type II protein kinase A (PKA). While information is unfolding regarding specific binding motifs, very little is known about the overall structure and dynamics of these scaffold proteins. We have used deuterium exchange-mass spectrometry (DXMS) and limited proteolysis to probe the folded regions of D-AKAP2, providing for the first time insight into the intra-domain dynamics of a scaffold protein. Deuterium on-exchange revealed two regions of low deuterium exchange that were surrounded by regions of high exchange, suggestive of two distinctly folded regions, flanked by disordered or solvent accessible regions. Similar folded regions were detected by limited proteolysis. The first folded region contained a putative regulator of G-protein signaling (RGS) domain. A structural model of the RGS domain revealed that the more deuterated regions mapped onto loops and turns, whereas less deuterated regions mapped onto alpha-helices, consistent with this region folding into an RGS domain. The second folded region contained a highly protected PKA binding site and a more solvent-accessible PDZ binding motif, which may serve as a potential targeting domain for D-AKAP2. DXMS has verified the multi-domain architecture of D-AKAP2 implied by sequence homology and has provided unique insight into the accessibility of the PKA binding site.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources