Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep 11;50(19):5294-9.
doi: 10.1021/jf020408a.

Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory

Affiliations

Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory

V Exarchou et al. J Agric Food Chem. .

Abstract

Oregano vulgare L. ssp. hirtum (Greek oregano), Salvia fruticosa (Greek sage), and Satureja hortensis (summer savory) were examined as potential sources of phenolic antioxidant compounds. The antioxidant capacities (antiradical activity by DPPH* test, phosphatidylcholine liposome oxidation, Rancimat test) and total phenol content were determined in the ethanol and acetone extracts of the dried material obtained from the botanically characterized plants. The ground material was also tested by the Rancimat test for its effect on the stability of sunflower oil. The data indicated that ground material and both ethanol and acetone extracts had antioxidant activity. Chromatographic (TLC, RP-HPLC) and NMR procedures were employed to cross-validate the presence of antioxidants in ethanol and acetone extracts. The major component of all ethanol extracts was rosmarinic acid as determined by RP-HPLC and NMR. Chromatography indicated the presence of other phenolic antioxidants, mainly found in the acetone extracts. The presence of the flavones luteolin and apigenin and the flavonol quercetin was confirmed in the majority of the extracts by the use of a novel (1)H NMR procedure, which is based on the strongly deshielded OH protons in the region of 12-13 ppm without previous chromatographic separation. This deshielding may be attributed to the strong intramolecular six-membered ring hydrogen bond of the OH(5)...CO(4) moiety.

PubMed Disclaimer

Publication types

LinkOut - more resources